The temporal proteome response to severe traumatic injury in human leukocytes revealed by large-scale quantitative clinical proteomics using an 18O-labeled reference

Wei-Jun Qian, Carie N. Nicora, Brianne O. Petrits, Athene A. Scheimpfeus, Ronald J. Moore, Matthew E. Monroe, Lyle L. Moldawer, Ronald V. Maer, Ronald G. Tompkins, David G. Camp, Richard D. Smith

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA; Department of Surgery, University of Florida School of Medicine, Gainesville, FL; Harborview Medical Center, University of Washington, Seattle, WA; Department of Surgery, Massachusetts General Hospital, Boston, MA; University of Rochester Medical Center, Rochester, NY

Overview

• Inflammatory and immune response to severe traumatic injury was studied by quantitative temporal profiling of the blood leukocyte proteomes including T-cells, monocytes, and neutrophils collected at different time points post-injury.

• 18O-labeled reference based quantification enables large-scale population studies by providing comprehensive isotope labeled standard intensities for all samples.

• Quantitative analyses were performed for ~160 monocyte and T-cell samples longitudinally collected from ~160 severe trauma patients.

• 532 and 312 proteins were observed with significant temporal post-injury response in monocytes and T-cells, respectively.

• The dataset revealed a number of important biological functions and pathways involved in post-trauma response.

Introduction

• The host response to injury is a collection of pathophysiologic processes that critically depend upon the regulation of the innate immune system.

• Blood leukocytes such as T-cells, monocytes, and neutrophils (PMN) represent unique, easily accessible samples for studying inflammatory and immune response to injury.

• High-throughput quantitative clinical proteomics provides significant potential for gaining new insights into the host response to injury and for discovering novel protein targets for therapeutic interventions or for predicting clinical outcomes.

• 18O-labeled reference based quantification provides robust reproducibility and an ideal solution for large-scale human population proteomics.

Methods

• Leukocyte samples, T-cells, and monocytes were isolated from whole blood using 8-mL CPTTM cell pellet samples were processed using a TFE-based digestion protocol within a single tube without the need for clean-up.

• An 18O-labeled reference peptide sample was generated by tryptic-catalyzed 18O/16O exchange reaction. The labeled peptide was prepared in sufficient quantity to cover ~1500 samples for each cell type. The reference is then spiked into each clinical sample to enable 18O/16O protein quantification.

• LC-MS/MS analysis. All samples analyzed on an LTQ Orbitrap instrument equipped with automated 4-column LC system.

• Data Analysis. LC-MS data were analyzed using inhouse software tools Decon2LS and VIPER, and peptides were identified using the accurate mass and time tag strategy. Quantitative data were analyzed with a downstream tool called DTA/TE for normalization, data visualization, and statistical analyses.

Results

Reproducibility evaluation

Figure 1. Pearson correlation plots for a sample analyzed over four months on different instruments.

Figure 2. Average temporal proteome response to trauma

Figure 3. Average temporal proteome response to trauma and patient heterogeneity for CD14, each bar represents an individual patient.

Temporal proteome response to trauma

Figure 4. Top significant biological functions and pathways enriched in the trauma/responding proteome based on Ingenuity Pathway Analysis. Left: biological functions; right: canonical pathways.

Biological functions and pathways

Table 1. Candidate proteins predictive of multiple organ failure (MOF)

Patient classification

Candidate proteins predictive of multiple organ failure (MOF)

Table 2. Candidate proteins predictive of multiple organ failure (MOF)

Conclusions

• An overall picture of temporal proteome response to severe trauma was revealed for the T-cells and monocytes by identifying 532 monocyte proteins and 312 T-cell proteins with significant dynamic changes.

• Detailed protein abundance changes associated with different biological functions and canonical pathways were revealed. Many of these proteins may serve as novel protein targets for therapeutic interventions or for predicting clinical outcomes.

• Further preliminary analysis of T-cell proteins displaying differential abundances longitudinally revealed 24 proteins predictive of multiple organ failure based on early time point.

• 18O-labeled 'universal' reference-based quantification provides robust reproducibility independent of instrument performance variations.

• The study represents a first-of-its-kind large-scale population proteomics application illustrating the potential for gaining a systems-level understanding of human disease.

Acknowledgements

The study was supported by contracts DE-AC05-76RLO 1830 and DE-AC05-76RLO 1830 to Pacific Northwest National Laboratory (PNNL) from the Department of Energy (DOE) under Contract No. DE-AC05-76RLO 1830. We thank Tidwell, Smith, and Camp for invaluable discussions. We thank Rohit Gupta, Andrew Moore, and Michael Monahan of the Department of Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility at the Pacific Northwest National Laboratory (PNNL), for assistance with sample preparation. We gratefully acknowledge the technical support of the Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility and DOE Office of Biological and Environmental Research user facility located at PNNL. We thank the staff and engineers of the Biological Sciences Division, K8-98, for assistance with sample preparation.

References

