Introduction

Overview

- Software tool for discovery and characterization of possible peptide signatures in LC-IMS-TOF MS.
- Outputs of the software will be used for peptide identifications or AMT tag database creation.
- Extended pipeline should be able to detect co-eluting peptides in LC-IMS-TOF MS data.
- Addition of ion mobility to existing data analysis instruments.

Methods

Software development

- Microsoft .NET’s Parallel Extensions Library
-VILLE’s Parallel Extensions Library
- High pressure converging hourglass ion funnel
- Tab-delimited text (previous generation pipeline)

Algorithm development

- Data smoothing implemented to account for features with low signal-to-noise ratios and low abundant features
- Report multiple conformations or co-eluting peptides as separate features
- Algorithm will not discern between multiple conformations and co-eluting peptides
- Detected conformations should resemble a Gaussian distribution
- Limited data points in raw data give the need to interpolate points of the detected conformation to build the most accurate profile

LC-IMS-TOF MS platform

- High pressure converging hourglass ion funnel focuses and traps ions prior to ion injection
- 1-meter IMS drift cell
- Orthogonal Aperture TOF MS provides high mass measurement accuracy after IMS separation
- Data acquired through Multiplexed ion Mobility Time-of-Flight Mass Spectrometry

For more info, see: http://omics.pnl.gov

LC-IMS-MS Feature Finder: Detecting Multidimensional Features in LC-IMS-TOF MS Data

Pacific Northwest National Laboratory, Richland, WA

Conformation Detection

Detected peaks from smoothed data

- Raw data is first smoothed using a Gaussian kernel smoother
- Peaks are detected from smoothed data using a simple 3-point peak picking algorithm

Results

Distribution of multiple conformations

- Multiple conformations are seen the most often in 3+ features
- Multiple conformations are rarely seen in 1+ features
- On average, about 10% of detected features contain multiple conformations

Peaks

- Conformation score = the expected resolution of the IMS-TOF instrument
- Drift time error calculated by matching features together across multiple datasets of technical replicates using MultiAlign

Drift time accuracy

- Drift time error calculated by matching features together across multiple datasets of technical replicates using MultiAlign
- Errors are only considered for features seen in all (10) datasets

Distribution of conformation scores exhibit a normal distribution skewed towards the end of higher scores

Accuracy

- IMS Profile is reproducible across technical replicates
- Multiple conformations are also reproducible

Conclusion

- Multiple conformations and co-eluting peptides are often observed in the IMS dimension.
- Software is integrated into existing AMT tag pipeline.
- Run time of software is less than 10 min, which allows it to keep up with the high-throughput instrumentation.
- Robustness of software allows for software users to account for future IMS-TOF instrument updates.
- Scoring function of a single conformation can be used by downstream analysis tools as a confidence measure.
- Ion mobility drift time profile is seen as repeatable across multiple analyses of the same sample type.
- Peptides can be identified by using mass, elution time, charge state, and drift time reported by software.

Acknowledgements

This work is funded by the DOE Office of Environmental Management’s Science Program, the High Flux Isotope Reactor, the Pacific Northwest National Laboratory, and the Biotechnology and Bioenergy Research Program of the DOE Office of Biological and Environmental Research. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC05-76RLO 1830. This work is managed by Battelle for the DOE.

References

CONTACT: Kevin Crowell

E-mail: Kevin.Crowell@pnnl.gov