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Purpose:  Demonstration of an automated 

Immobilized Metal Ion Affinity 

Chromatography (IMAC) enrichment 

system with utility for bacterial 

applications. 

Method:  Automated IMAC system with a 

large capacity IMAC column to enrich 

strong cation exchange-fractionated 

phosphopeptides from the soluble 

proteome of Escherichia coli MG1655. 

Results: Identification of 75 unique 

peptides with phosphorylation on S/T/Y 

corresponding to 52 phosphorylated 

proteins. 

• The automated IMAC system enhances 

analytical performance and reduces 

labor costs. 

• The employment of a large-capacity 

IMAC column increases peptide loading 

amount and reduces the wash time. 

• The automated IMAC system can be 

readily adapted to other applications. 

• Our data enrich the understanding of E. 

coli phosphoproteome. 

• The phosphoproteome is essential to a 

variety of biological processes, 

particularly carbohydrate metabolism. 

 

• While phosphoproteins play important roles in cell 

signaling and regulating protein activity, relatively little is 

known about protein phosphorylation in bacterial 

systems.  

• Phosphoproteome enrichment is an essential step in 

the analysis of protein phosphorylation. While the IMAC 

strategy has proved valuable for enriching 

phosphopeptides in eukaryotic samples, it has not 

previously been demonstrated for bacterial cells. 

• We applied an automated IMAC enrichment strategy 

for bacterial phosphopeptide analysis1 and 

demonstrated: 

– Highly enriched phosphopeptides. 
 Enrichment factor (phosphorylated/total peptides)  

is 82.1%. 

– High throughput automated operation. 
 Without human intervention, nine samples were  

enriched in a day, with consistent performance. 

– Large-capacity IMAC column.  
 Facilitated unbiased recovery of phosphopeptides with  

a range of phosphorylation states. 

 Increased sample loading capacity (>20 times). 

 Reduced wash time (from 1-5 µl/min to 20 µl/min). 

– The number of injected solutions can readily be 

adjusted according to the purpose of the 

experiment. 
 Up to four buffers can be used in the conventional  

pump system. 

Fig. 2: Overview of phosphoproteome 

analysis for E. coli. 

 

1) Tryptic digestion of the soluble proteins 

from E.coli MG1655 grown in M9 minimal 

medium. 

2) Fractionation of the resulting peptides 

using strong cation exchange (SCX). 

3) Enrichment of phosphopeptides using 

automated IMAC system. 

4) Analysis of the enriched peptides using 

LC-MS/MS. 

5) Data analysis. 

Fig. 1: Schematic representation of the automated IMAC enrichment 

setup.  Fully controlled by the custom-designed software, the sample is 

loaded by the autosampler PAL onto the sample loop.  The content of the 

sample loop is pushed to the Fe3+-bound IMAC column to trap the 

phosphopeptides.  The flow-through (FT) (mainly non-specifically bound 

peptides) is collected through the valve position (FT1, FT2, or FT3).  

Lastly, the trapped phosphopeptides are eluted with phosphate buffer and 

collected through the valve position (C1, C2, or C3). 

Biological 

implications 

Fig. 5: The E. coli phosphoproteome involved in biological processes. 

 

• The phosphoproteins observed in this study play important biological 

roles, particularly in the central metabolism. 

• Consistent with previous studies, the phosphoproteins identified in our 

study are mainly involved in carbohydrate metabolism. 
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Fig. 4: Identification of E. coli phosphopeptides. 

  

• Phosphorylation events revealed by the IMAC enrichment strategy 

included 75 unique phosphopeptides that cover 52 phosphorylated 

proteins. 

• 58 of the 75 phosphopeptides were novel identifications, highlighting 

the complementary nature of the IMAC and TiO2 enrichment 

strategies for bacterial phosphoproteomics. 

• Noted differences between the two enrichment strategies: 

– Growth conditions (i.e., M9 minimal medium in our study vs. LB 

rich medium in Macek et al.3). 

– Starting material (i.e., soluble proteins in our study vs. global 

proteins in Macek et al.3). 

• The phosphorylation site localization was evaluated based on an 

A-score2, and the identified phosphorylated peptides (FDR <5%) 

were manually confirmed (Fig. 3A as an example). 

• Results were consistent with previous reports that phosphorylation 

occurs mainly on serine/threonine. 

• Phosphorylation on histidine or aspartic acid was not observed, 

which could be caused by the instability of phosphorylation on 

histidine or aspartic acid under the acid conditions required for the 

IMAC enrichment strategy. 
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Fig. 3A: Representative MS/MS spectrum of phosphoglyceromutase 

III (gpmI) phophopeptide QMGNpSEVGHVNLGAGR. 3B: Distribution 

of phosphorylation sites. 
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