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LCMS Information Funnel
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High-throughput LC-FTICR-MS Analysis (AMT) tag

Accurate Mass and Time Tag Approach

SEQUEST and/or 
X!Tandem Results
•Filtering
•Calculate Exact Mass
•Normalize Observed 
Elution Time

μLC- FTICR-MS Peak-Matched Results

Compare Abundances
across Multiple ProteomesShi, Adkins, et. al., J. Bio. Chem. 2006, 29131-29140.

Complex 
samples



Accurate Mass and Time (AMT) Tag Data Processing Pipeline

Automated sample 
processing

Sample blocking

Sample blocking
& randomization

LCMSWarp

SLiC
ScoreQA/QC 

trends

QA/QC 
trends

SEQUEST
X!Tandem

MASIC

Decon2Ls VIPER

STARSuite Extractor
Q Rollup

Mini-
proteome

PRISM: G.R. Kiebel et. al. Proteomics 2006, 6, 1783-1790.



Example Data for the AMT tag Pipeline Demo

Salmonella typhimurium, LC-MS/MS
Grown in LB (Luria-Bertani) up to log phase
Soluble portion of cell lysis
“Mini-AMT tag” database, composed of 25 SCX fractions 
analyzed by LC-MS/MS
Mass and time tag database composed from searches using 
X!Tandem (Log E_Value ≤ -2)
Linear alignment of datasets for AMT tag database

LC-MS
Different sample, grown and prepared in the same conditions
LC-FTICR-MS analysis (11T FTICR)
Non-linear alignment and peak matching to the database



Software & Data

AMT tag Pipeline Software

http://ncrr.pnl.gov/

http://www.proteomicsresource.org/

Salmonella typhimurium data resource



Funding for Tool Development
NIH

National Center for Research Resources
National Institute of Allergy and Infectious Diseases
National Cancer Institute
National Institute of General Medical Sciences
National Institute of Diabetes & Digestive & Kidney Diseases

DOE Office of Biological and Environmental Research



Other Excellent Software Resources
http://www.ms-utils.org/ (Magnus Palmblad)
http://open-ms.sourceforge.net/index.php (European consortium)
http://tools.proteomecenter.org/SpecArray.php (ISB)
http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/Peak_Alignment/
(Tobias Kind with Oliver Fiehn)
http://www.proteomecommons.org/tools.jsp
(Phil Andrews and Jayson Falkner)
https://proteomics.fhcrc.org/CPAS/Project/home/begin.view (CPAS)
http://arep.med.harvard.edu/MapQuant/ (MapQuant)
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Mass spectra capture the changing composition of peptides eluting from the column

LC-MS data
Complex peptide mixture on a column is separated by liquid 
chromatography over a period of time
Changing composition of the mobile phase causes different peptides 
to elute at different times
The components eluting from a column is sampled continuously by 
sequential mass spectra



Structure of LC-MS Data
Each compound is observed as an isotopic pattern in a 
mass spectrum which is dependent on its chemical 
composition, charge and resolution of instrument

Peptide: VKHPSEIVNVGDEINVK

Parent Protein: gi|16759851 30S ribosomal 
protein S1

Charge: 2+
m/z: 939.0203
Monoisotopic Mass: 1876.0054 Da
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Structure of LC-MS Data
A mass spectrum of a complex mixture contains overlaid 
distributions of several different compounds
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Structure of LC-MS Data
A mass spectrum of a complex mixture contains overlaid 
distributions of several different compounds.



Structure of LC-MS Data
With LC as the first dimension, each compound is 
observed over multiple spectra, showing a three-
dimensional pattern of m/z, elution time and abundance

Salmonella typhimurium dataset

Peptide: VKHPSEIVNVGDEINVK

Parent Protein: gi|16759851 30S 
ribosomal protein S1

Charge: 2+
m/z: 939.0203
Monoisotopic Mass: 1876.0054 Da

Elution range: Scans 1539 - 1593



Feature Discovery in LC-MS data
Goal: Infer (mass, elution time, intensity) of compounds 
that are present in data obtained from an LC-MS dataset

Since their identities are unknown, the compounds are more 
appropriately termed features to refer to the idea that these are 
inferred from a three dimensional pattern

2D view of an LC-MS analysis of Salmonella typhimurium



Feature Discovery in LC-MS data
Sequential process of finding features in each mass spectrum is 
followed by grouping of features over multiple spectra together

2D views of an LC-MS dataset in different stages of processing

raw data
Collapsed 

monoisotopic
features in all spectra

LC-MS featuresdeisotoping Elution profile discovery
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Feature discovery in individual spectra
Deisotoping

Process of converting a mass spectrum (m/z, intensity) into a list 
of species (mass, abundance, charge)

Deisotoping a mass spectrum of 4 overlapping species

charge Monoisotopic MW abundance
2 1546.856603 533467
2 1547.705048 194607
2 1547.887682 671947
2 1548.799612 426939



Deisotoping routine for a peak
Algorithm to detect peptides in a complex spectrum

avg. mass = 1876.02

Charge 
detection
algorithm2

theoretical spectrum

Fitness value

Averagine3

estimated empirical 
formula: 

C83 H124 N23 O25 
S1

Mercury4

charge = 2

observed spectrum

1. Horn, D.M., Zubarev, R.A., McLafferty, F.W. Automated Reduction and Interpretation of High Resolution Electrospray Mass Spectra of Large 
Molecules. J. Am. Soc. Mass Spectrom. 2000, 11, 320-332.
2. Senko, M. W.; Beu, S. C.; McLafferty, F. W. Automated assignment of charge states from resolved isotopic peaks for multiplycharged ions. J. Am. 
Soc. Mass Spectrom. 1995, 6, 52–56.
3. Senko, M. W.; Beu, S. C.; McLafferty, F. W. Determination of monoisotopic masses and ion populations for large biomolecules from resolved 
isotopic distributions. J. Am. Soc. Mass Spectrom. 1995, 6, 229–233.
4. Rockwood, A. L.; Van Orden, S. L.; Smith, R. D. Rapid Calculation of Isotope Distributions. Anal. Chem. 1995, 67, 2699–2704.



Deisotoping entire spectrum –
Modification of THRASH1

Spectrum
Calculate 

background 
intensity

Find peaks 
in spectrum

Choose most 
abundant peak

S/N, 
intensity > 
thresholds

Determine 
its charge

Guess empirical 
formula for mass

= (mz-1.00782)*CS 

Generate 
theoretical 

profile, 
initialize fit = ∞

Calculate fit
score

fit 
improves?

Calculate fit Fit 
improves?

fit 
better than
threshold ?

m/z of peak = mz

yes

Done

no

charge = 
CS

Empirical 
formula=

CnHmNxOySz

Fit score = fitnew

fit = fitnew

yes

no
Unshift

theoretical profile

yes

noFit score = fitnew

fit = fitnew

yes

no

Delete isotopic 
peaks from peak list, 
points in spectrum, 

& add to deisotoped results

Delete isotopic 
peaks from peak list 
& profile in spectrum

Shift 
theoretical 

profile by +1Da

Shift 
theoretical 

profile by -1Da

1. Horn, D.M., Zubarev, R.A., McLafferty, F.W. Automated Reduction and Interpretation of High Resolution Electrospray Mass 
Spectra of Large Molecules. J. Am. Soc. Mass Spectrom. 2000, 11, 320-332.



Modified THRASH Routine
Algorithm to detect peptides in a complex spectrum
1. Discover all peaks in a spectrum above a specified S/N and keep in 

unprocessed list
2. Select most abundant peak still unprocessed
3. Compute charge for peak using charge detection algorithm
4. Compute average mass from observed m/z and predicted charge value
5. Use “Averagine” algorithm to guess empirical formula based on mass 

and average composition of peptides in database
6. Use Mercury algorithm to generate theoretical spectrum from the 

predicted empirical formula, charge of peak, and resolution of peak
7. Calculate fitness value for similarity between theoretical and observed 

spectrum
8. Perform “THRASHING” by overlaying theoretical and observed spectra 

after applying “isotopic” one dalton shift to the theoretical spectrum. 
Keep best fit

9. If successful fit was observed, delete isotopic peaks and associated 
profile of height above specified threshold of most intense ions using 
the theoretical pattern as template. Otherwise remove current peak 
only from list of unprocessed peaks. 

10. While unprocessed peaks remain, repeat steps starting at step 2.



Charge Detection Algorithm
Patterson (Autocorrelation) algorithm to detect charge of 
a peak in a complex spectrum

1. Zhang, Z; Marshall, A.G. A Universal Algorithm for Fast and Automated Charge State Deconvolution of Electrospray Mass-to-Charge Ratio 
Spectra. J. Am. Soc. Mass Spectrom. 1998, 9, 225-233.

2. Senko, M. W.; Beu, S. C.; McLafferty, F. W. Automated assignment of charge states from resolved isotopic peaks for multiplycharged ions. J. 
Am. Soc. Mass Spectrom. 1995, 6, 52–56.

3. Labowsky, M; Whitehouse, C.; Fenn, J.B. Rapid Commun. Mass Spectrom. 1993, 7, 71-84.
4. Reinhold, B.B.; Reinhold, V.N. Electrospray Ionization Mass Spectrometry: Deconvolution by an Entropy-Based Algorithm. J. Am. Soc. Mass 

Spectrom. 1992, 3, 207-215.
5. Mann, M.; Meng, C.K.; Fenn, J.B. Interpreting Mass Spectra of Multiply Charged Ions. Analytical Chemistry. Aug. 1, 1989, 61, 1702-1708.
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Averagine Algorithm
Algorithm to guess an average empirical formula for a given mass

Uses average composition of all peptides in peptide database as the 
empirical formula for all peptides
Protein database Averagine formula: C4.9384 H7.7583 N1.3577 O1.4773 S0.0417 , 
Mass = 111.1254
Average Mass of 1877.025 would give a multiplier of 1877.025/111.1254

1. Senko, M. W.; Beu, S. C.; McLafferty, F. W. Determination of monoisotopic masses and ion populations for large biomolecules
from resolved isotopic distributions. J. Am. Soc. Mass Spectrom. 1995, 6, 229–233.

10.0417*1877.025/111.1254S
251.4773*1877.025/111.1254O

231.3577*1877.025/111.1254N
Remainder = 112H
844.9834*1877.025/111.1254C
AtomicityCopiesElement

Empirical formula used for theoretical profile = C83 H112 N23 O25 S1



Theoretical Isotopic Profile
Mercury algorithm to generate a theoretical profile for a compound

Treat each element’s isotopic distribution as a sum of delta (δ) functions

1. Rockwood, A. L.; Van Orden, S. L.; Smith, R. D. Rapid Calculation of Isotope Distributions. Anal. Chem. 1995, 67, 2699–2704.
2. Kubinyi, H. Calculation of isotope distributions in mass spectrometry. A trivial solution for a non-trivial problem. Analytica Chemica

Acta. 1991, 247, 107-119. 

0.99759 δ(m-15.99491) + 0.000374 δ(m-16.99913) + 0.002036
δ(m-17.99916)

Oxygen

0.9502 δ(m-31.97207) + 0.0075 δ(m-32.97145)+ 0.0421 δ(m-
33.96786) + 0.0002 δ(m-35.96708)

Sulphur

0.996337 δ(m-14.00307 ) + 0.003663 δ(m-15.00011 )Nitrogen

0.99985 δ(m-1.007825) + 0.00015 δ(m-2.014102)Hydrogen

0.98893 δ(m-12) + 0.01107 δ(m-13.00336)Carbon

Isotope distribution FunctionElement

Relative isotope abundance Isotope Mass



Theoretical Isotopic Profile
Mercury algorithm to generate a theoretical profile for a compound

Treat each element’s isotopic distribution as a sum of delta (δ) functions
Convert distribution function into frequency domain: delta functions 
convert to simple exponential functions

0.99759 e15.99491(i2π)μ + 0.000374 e16.99913(i2π)μ + 0.002036
e17.99916 (i2π)μ

Oxygen

0.9502 e31.97207 (i2π)μ + 0.0075 e32.97145 (i2π)μ + 0.0421
e33.96786(i2π)μ + 0.0002 e35.96708(i2π)μ

Sulphur

0.996337 e14.00307(i2π)μ + 0.003663 e15.00011(i2π)μNitrogen

0.99985 e1.007825(i2π)μ + 0.00015 e2.014102(i2π)μHydrogen

0.98893 e12(i2π)μ + 0.01107 e13.00336(i2π)μCarbon

Frequency Spectrum Function (fElem(μ))Element



Theoretical Isotopic Profile
Mercury algorithm to generate a theoretical profile for a compound

Treat each element’s isotopic distribution as a sum of delta (δ) functions
Convert distribution function into frequency domain: delta functions 
convert to simple exponential functions. 
Calculate the isotopic profile for a compound from the convolution of 
isotopic distributions of individual atoms and the imposition of a peak 
shape reflecting resolution of instrument
Compute convolution using multiplication in the frequency domain and by 
applying a Fourier transform

F(m) = FT [s(μ) fC(μ)n fH(μ)m fN(μ)x fO(μ)y fS(μ)z]

For the empirical formula CnHmNxOySz

Frequency spectra of elementsInverse transform of shape function



Fit Functions
Fit functions to quantitate quality of match between 
theoretical and observed profiles

• Least square area1: Σ (ti-oi)2 / Σti2

• Least square peak: Σ (Tj-Oj)2 / ΣTj
2

• Chi-square area: Σ (ti-oi)2 / Σti
• Chi-square peaks2: Σ (Ti-Oi)2 / ΣTi

Threshold intensity for points to 
be scored

ti: theoretical intensity of ith
point

oi: observed intensity of ith
point (after normalizing)

Tj: theoretical intensity of jth
“isotopic” peak

Oj: observed intensity of jth
“isotopic” peak

1. Horn, D.M., Zubarev, R.A., McLafferty, F.W. Automated Reduction and Interpretation of High Resolution Electrospray Mass 
Spectra of Large Molecules. J. Am. Soc. Mass Spectrom. 2000, 11, 320-332.

2. Senko, M. W.; Beu, S. C.; McLafferty, F. W. Determination of monoisotopic masses and ion populations for large biomolecules
from resolved isotopic distributions. J. Am. Soc. Mass Spectrom. 1995, 6, 229–233.



Chemical Labeling with Tags
Specify a static tag to be applied to Averagine formula

Changes the Averagine formula generated
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Subtract average 
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autocorrelation charge = 1 
Average mass = 345.01

autocorrelation charge = 1 
mass = 265.1065

C5 H174 N1 O1 S0

Calculate 
Averagine formula

C5 H174 N1 O1 S0 Br1

Add tag formula to 
Averagine formula

Interesting profile because of the isotopic distribution 
of bromine (51% 78.91833 , 49% 80.91629) 



Chemical Labeling with Tags
Specify a static tag to be applied to Averagine formula

Changes the Averagine formula generated
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16O/18O Mixtures
Overlapping isotope patterns separated by 4 Da

If peaks exist 4 Da before current peak, those are processed 
first, and only the first four isotopic peaks are removed
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Isotopic Composition
Changing natural abundances
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13C, 15N depleted media – isotopic 
composition of atoms is different 
from those found in nature. 
Distribution of isotopes of Sulfur 
predominates the distribution 
shown below



Isotopic Composition
Changing natural abundances



Isotopic Composition
Changing natural abundances

Changing 12C/13C, 14N/15N isotopic abundances from those in 
nature to approriate ones results in a better fit
As shown, estimated isotopic abundances were still not perfect
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LC-MS Feature Discovery

• Black dots indicate individual 
m/z values
• Green dots signify successfully 
deisotoped data
• Shades of red indicate data 
intensity

• Black dots indicate individual 
m/z values
• Green dots signify successfully 
deisotoped data
• Shades of red indicate data 
intensity
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Feature definition over elution time
Deisotoping collapses original data into data lists

Goal: Given series of deisotoped mass spectra, group 
related data across elution time

Look for repeated monoisotopic mass values in sequential 
spectra, allowing for missing data
Can also look for expected chromatographic peak shape
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Feature definition over elution time
Can visualize deisotoped data in two-dimensions

Time

M
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s

S. typhimurium dataset 
on 11T FTICR



Charge state view

Feature definition over elution time

• Plotting monoisotopic mass,
but color is based on charge of the 
original data point seen

• Monoisotopic Mass =
(m/z x charge) - 1.00728 x charge

Time

M
as

s



Feature definition over elution time
Zoom-in view of species

Time
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s



Same species in multiple spectra need to be grouped 
together Related peaks found using a 

weighted Euclidean distance; 
considers:

Mass
Abundance
Elution time
Isotopic Fit

Feature definition over elution time



Grouping uses single linkage clustering
Form connections between data points in n-dimensions
Compute the Euclidean distance between two points

distance = Sqrt { [weightmass x (massa – massb)]2 + 
[weightabu x (LogAbua – LogAbub)]2 +
[weightET x (ETa – ETb)]2 +
[weightfit x (fita– fitb)]2 }

If distance < threshold, combine points together

Feature definition over elution time



Determine 6 separate groups
Typically require 2 or 3 points per group

Feature definition over elution time



Feature definition over elution time
Feature detail

Median Mass: 1904.9399 Da (more tolerant to outliers than average)
Elution Time: Scan 1757 (0.363 NET)
Abundance: 1.7x107 counts (area under 2+ SIC)

See both 2+ and 3+ data
Stats typically come from the most abundant charge state
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Second example
LC-MS feature eluting over 7.5 minutes

Feature definition over elution time

Clustering algorithm allows for missing 
data, common with chromatographic tailing



Second example, feature detail
Median Mass: 2068.1781 Da
Elution Time: Scan 1809 (0.380 NET)
Abundance: 8.7x107 counts (area under 3+ SIC)

This example has primarily 3+ data; previous had even mix of 2+ and 3+ data

Feature definition over elution time

Scan number

Monoisotopic Mass

2,068.075

2,068.095

2,068.115

2,068.135

2,068.155

2,068.175

2,068.195

1,775 1,800 1,825 1,850 1,875 1,900 1,925 1,950 1,975 2,000 2,025 2,050

1 2 3Charge:

5 ppm

0.0E+0

1.0E+6

2.0E+6

3.0E+6

4.0E+6

A
bu

nd
an

ce
 (c

ou
nt

s)

Both
2+ data
3+ data

Selected Ion 
Chromatograms



Feature definition over elution time
Refining the features

Require data spans at least 3 spectra
Exclude grouped feature if it is too long (e.g. ≥ 15% of dataset)

Scan number

1,612.650

1,612.670

1,612.690

1,612.710

1,612.730

1,612.750

1,540 1,545 1,550 1,555 1,560 1,565 1,570 1,575 1,580 1,585 1,590 1,595 1,600 1,605 1,610 1,615

1,612.770

0.0E+0

1.0E+6

2.0E+6

3.0E+6

4.0E+6

Sometimes the Euclidean distance results in undesirable clustering
Split if elution profile indicates two or more entities with a mass 
difference ≥ threshold (e.g. 4 ppm)
Necessary since hard to define clustering weights and distance constraints 
that work in all situations

9 ppm



Feature definition over elution time
Example: S. typhimurium dataset on 11T FTICR

• 100 minute LC-MS analysis (3360 mass spectra)
• 67 cm, 150 μm I.D. column with 5 μm C18 particles
• 78,641 deisotoped peaks
• Group into 5910 LC-MS Features



Isotopic Pairs Processing
Paired features typically have identical sequences, with 
and without an isotopic label

e.g. 16O/18O pairs or 14N/15N pairs

Data prior 
to finding 
features

LC-FTICR-MS

Control
(16O water)

Perturbed
(18O water)



Isotopic Pairs Processing
Data after finding paired features

4 Da pair spacing due to incorporation of two 18O atoms

LC-FTICR-MS

Control
(16O water)

Perturbed
(18O water)



Paired feature example: 16O/18O data

Isotopic Pairs Processing

Monoisotopic Mass

Scan number

1,235.0

1,236.2

1,237.4

1,238.6

1,239.8

1,241.0

1,242.2

1,243.4

1,244.6

1,245.8

1,247.0

2,688 2,700 2,712 2,724 2,7360.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2700 2710 2720 2730

Pair #424; Charge used = 2AR = 1.78 (LightArea÷Heavyarea); or
AR = 1.34 ± 0.2 (scan-by-scan)

4.0085 Da

Scan number

Monoisotopic Mass

1,279.0

1,280.2

1,281.4

1,282.6

1,283.8

1,285.0

1,286.2

1,287.4

1,288.6

1,289.8

1,291.0

3,010 3,026 3,042 3,058

4.0085 Da

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

3010 3020 3030 3040 3050 3060 3070

Pair #460; Charge used = 2AR = 0.13 (LightArea÷Heavyarea); or
AR = 0.12 ± 0.02 (scan-by-scan)

Compute AR using ratio of areas, or 
Compute AR scan-by-scan, then average AR values (members must co-elute)



Scan number

Monoisotopic Mass

2,925.0

2,934.0

2,943.0

2,952.0

2,961.0

2,970.0

2,979.0

2,988.0

2,997.0

3,006.0

3,015.0

1,695 1,698 1,701 1,704 1,707 1,710 1,713 1,716 1,719 1,722 1,725 1,728 1,731

Paired feature example: 14N/15N data
Pair members often do not co-elute
Use bulk area ratio, or re-align pair members then compute AR scan-by-scan

Isotopic Pairs Processing

AR = 1.17 (LightArea÷Heavyarea)

1.0E+6

2.0E+6

3.0E+6

4.0E+6

5.0E+6

30.9 Da, corresponding to 31 N atoms
Matching AMT: GILSGEFDHIPEQAFYMVGSIDEAVEK
Empirical formula: C134H201N31O44S



Feature definition over elution time
Numerous options for clustering 
data to form LC-MS features and 
for finding paired features



Outline
Introduction
Feature discovery in LC-MS datasets

Feature discovery in individual spectra
Feature definition over elution time

Identifying LC-MS Features using an AMT tag DB



Accurate Mass and Time (AMT) tag
Unique peptide sequence whose monoisotopic mass and 
normalized elution time are accurately known
AMT tags also track any modified residues in peptide

AMT tag DB
Collection of AMT tags

AMT tag approach articles
R.D. Smith et. al. Proteomics 2002, 2, 513-523.
J.D.S. Zimmer, M.E. Monroe et. al., Mass Spec. Reviews 2006, 
25, 450-482.
L. Shi, J.N. Adkins, et. al., J. of Biological Chem. 2006, 281, 
29131-29140.

Assembling an AMT tag DB



What can we use an AMT tag DB for?
Query LC-MS/MS data to answer questions

How many distinct peptides were observed passing filter criteria?
Which peptides were observed most often by LC-MS/MS?
How many proteins had 2 or more partially or fully tryptic peptides?

Correlate LC-MS features to the AMT tags
Analyze multiple, related samples by LC-MS using a high mass 
accuracy mass spectrometer

e.g. Time course study, 5 data points with 3 points per sample
Characterize the LC-MS features

Deisotope to obtain monoisotopic mass and charge
Cluster in time dimension to obtain abundance information

Match to AMT tags to identify peptides
Align in mass and time dimensions
Match mass and time of LC-MS features to mass and time of AMT tags

Assembling an AMT tag DB



Assembling an AMT tag DB
Characterizing AMT tags

Analyze samples by LC-MS/MS
10 minute to 180 minute LC separations
Obtain 1000's of MS/MS fragmentation spectra for each sample

Analyze spectra using SEQUEST, X!Tandem, etc.
SEQUEST: http://www.thermo.com/bioworks/ 
X!Tandem: http://www.thegpm.org/TANDEM/index.html
R. Craig and R.C. Beavis, Bioinformatics 2004, 20, 1466-1467.

Collate results

List of 
peptide

and protein
matches



AID_STM_019_110804_19_LTQ_16Dec04_Earth_1004-10 #11195 RT: 44.76 AV: 1 NL: 2.79E5
T: ITMS + c NSI d Full ms2 626.19@35.00 [ 160.00-1265.00]
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987.28873.30

717.22
580.74 866.10703.01437.21 1004.39

360.21 678.22231.21 1086.31973.13 1178.33

Assembling an AMT tag DB
AMT tag example

R.VKHPSEIVNVGDEINVK.V
Observed in scan 11195 of dataset #19 in an SCX fractionation 
series

3+ species
Match 30 b/y ions
X!Tandem hyperscore = 80
X!Tandem Log(E_Value) = -5.9

y3
b8++

y4

b9++

b10++

y5

b11++

y6

b13++

y7

b16++
y8 y9

y10b7++



Assembling an AMT tag DB
AMT tag example

R.VKHPSEIVNVGDEINVK.V
Observed in scan 11195 of dataset #19 in an SCX fractionation 
series

3+ species
Match 30 b/y ions
X!Tandem hyperscore = 80
X!Tandem Log(E_Value) = -5.9



Assembling an AMT tag DB
Align related datasets using elution times of observed 
peptides

One option: utilize NET prediction algorithm to create theoretical 
dataset to align against

NET prediction uses position and ordering of amino acid residues to 
predict normalized elution time

0.76488.043-6.5R.TFAISPGHMNQLRAESIPEAVIAGASALVLTSYLVR.C

0.58973.961-8.9R.KVAAQIPNGSTLFIDIGTTPEAVAHALLGHSNLR.I

0.43862.803-11.6K.KTGVLAQVQEALKGLDVR.E

0.51962.583-7.3K.RFNDDGPILFIHTGGAPALFAYHPHV.-

0.41553.003-8.2R.GIIKVGEEVEIVGIK.E

0.22436.915-8.8R.LVHGEEGLVAAKR.I

0.16733.958-6.1R.AARPAKYSYVDENGETK.T

Predicted 
NET

Elution 
Time

X!Tandem
Log (E_Value)Peptide

K. Petritis, L.J. Kangas, et al., Analytical Chemistry 2003, 75, 1039-1048. 
K. Petritis, L.J. Kangas, et al., Analytical Chemistry 2006, 78, 5026-5039.
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Example: 506 unique peptides used for alignment; Log(E_Value) ≤ -6

Assembling an AMT tag DB
Align related datasets using elution times of observed 
peptides

One option: utilize NET prediction algorithm to create theoretical 
dataset to align against

NET prediction uses position and ordering of amino acid residues to 
predict normalized elution time

Alignment yields NET values based on observed elution times
Observed NET = Slope×(Observed Elution Time) + Intercept

VKHPSEIVNVGDEINVK
Elution time: 44.923 minutes
Predicted NET: 0.292
Observed NET: 0.303



Assembling an AMT tag DB
AMT tag example

R.VKHPSEIVNVGDEINVK.V
Observed in 7 (of 25) LC-MS/MS datasets in the SCX 
fractionation series

Analysis 1, scan 11195 3+, hyperscore 80, Obs. NET 0.303 

Compute monoisotopic mass: 1876.0053 Da
Average Normalized Elution Time: 0.3021 (StDev 0.0021)

Analysis 2, scan 9945 3+, hyperscore 69, Obs. NET 0.298

Analysis 3, scan 10905 2+, hyperscore 74, Obs. NET 0.301

Analysis 4, scan 9667 2+, hyperscore 77, Obs. NET 0.302



Assembling an AMT tag DB
Mass and Time Tag Database

Repository for AMT tags
Mass, elution time, modified residues, and supporting information 
for each AMT tag

Allows samples of unknown composition to be matched quickly 
and efficiently, without needing to perform tandem MS
Assembled by analyzing a control set of samples, cataloging 
each peptide identification until subsequent analyses no longer 
provide new identifications

0.0050.5572533.23048MYGHLKGEVA…QER36843675

0.0110.4592590.281511WVKVDGWDN…FER36715875

0.0020.3791960.06025HRDLLGATNP…TLR36609588

0.0050.2351175.61463SSALNTLTNQK17683899

0.0000.1431338.68261MTGRELKPHDR1662039

Observed 
NET 

StDev

Average 
Observed 

NET

Calculated 
Monoisotopic 

Mass
LC-MS/MS 
Obs. CountPeptideMT Tag ID



Assembling an AMT tag DB
Mini AMT tag DB

Database constructed from a relatively small number of datasets
e.g. 25 SCX fractionation samples from S. typhimurium, each 
analyzed by LC-MS/MS and then by X!Tandem
Protein database: S_typhimurium_LT2_2004-09-19

4550 proteins and 1.4 million residues

>STM1834 putative YebN family transport protein (yebN) {Salmonella typhimurium LT2}

MFAGGSDVFNGYPGQDVVMHFTATVLLAFGMSMDAFAASIGKGATLHKPKFSEALRTGLI

FGAVETLTPLIGWGLGILASKFVLEWNHWIAFVLLIFLGGRMIIEGIRGGSDEDETPLRR

HSFWLLVTTAIATSLDAMAVGVGLAFLQVNIIATALAIGCATLIMSTLGMMIGRFIGPML

GKRAEILGGVVLIGIGVQILWTHFHG

>STM1835 23S rRNA m1G745 methyltransferase (rrmA) {Salmonella typhimurium LT2}

MSFTCPLCHQPLTQINNSVICPQRHQFDVAKEGYINLLPVQHKRSRDPGDSAEMMQARRA

FLDAGHYQPLRDAVINLLRERLDQSATAILDIGCGEGYYTHAFAEALPGVTTFGLDVAKT

AIKAAAKRYSQVKFCVASSHRLPFADASMDAVIRIYAPCKAQELARVVKPGGWVVTATPG

PHHLMELKGLIYDEVRLHAPYTEQLDGFTLQQSTRLAYHMQLTAEAAVALLQMTPFAWRA

RPDVWEQLAASAGLSCQTDFNLHLWQRNR



Assembling an AMT tag DB
Database Relationships

Minimum information required:
Single table with Mass and NET

T_Mass_Tags

PK Mass_Tag_ID

Peptide
Monoisotopic_Mass
NET

Expanded schema:

T_Proteins

PK Ref_ID

Reference
Description

T_Mass_Tags

PK Mass_Tag_ID

Peptide
Monoisotopic_Mass

T_Mass_Tags_NET

PK,FK1 Mass_Tag_ID

Avg_GANET
Cnt_GANET
StD_GANET

T_Mass_Tags_to_Protein_Map

PK,FK1 Mass_Tag_ID
PK,FK2 Ref_ID

PK := Primary Key
FK := Foreign Key



Assembling an AMT tag DB
Microsoft Access DB Relationships

Full schema to track individual peptide observations

V_Filter_Set_Overview_Ex

Filter_Type
Filter_Set_ID
Extra_Info
Filter_Set_Name
Filter_Set_Description

T_Analysis_Description

PK Job

Dataset
Dataset_ID
Dataset_Created_DMS
Dataset_Acq_Time_Start
Dataset_Acq_Time_End
Dataset_Scan_Count
Experiment
Campaign
Organism
Instrument_Class
Instrument
Analysis_Tool
Parameter_File_Name
Settings_File_Name
Organism_DB_Name
Protein_Collection_List
Protein_Options_List
Completed
ResultType
Separation_Sys_Type
ScanTime_NET_Slope
ScanTime_NET_Intercept
ScanTime_NET_RSquared
ScanTime_NET_Fit

T_Mass_Tags

PK Mass_Tag_ID

Peptide
Monoisotopic_Mass
Multiple_Proteins
Created
Last_Affected
Number_Of_Peptides
Peptide_Obs_Count_Passing_Filter
High_Normalized_Score
High_Peptide_Prophet_Probability
Mod_Count
Mod_Description
PMT_Quality_Score

T_Mass_Tags_NET

PK,FK1 Mass_Tag_ID

Min_GANET
Max_GANET
Avg_GANET
Cnt_GANET
StD_GANET
StdError_GANET
PNET

T_Proteins

PK Ref_ID

Reference
Description
Protein_Sequence
Protein_Residue_Count
Monoisotopic_Mass
Protein_Collection_ID
Last_Affected

T_Mass_Tags_to_Protein_Map

PK,FK1 Mass_Tag_ID
PK,FK2 Ref_ID

Mass_Tag_Name
Cleavage_State
Fragment_Number
Fragment_Span
Residue_Start
Residue_End
Repeat_Count
Terminus_State
Missed_Cleavage_Count

T_Peptides

PK Peptide_ID

FK1 Analysis_ID
Scan_Number
Number_Of_Scans
Charge_State
MH
Multiple_Proteins
Peptide

FK2 Mass_Tag_ID
GANET_Obs
Scan_Time_Peak_Apex
Peak_Area
Peak_SN_Ratio

T_Score_Discriminant

PK,FK1 Peptide_ID

Peptide_Prophet_FScore
Peptide_Prophet_Probability

T_Score_Sequest

PK,FK1 Peptide_ID

XCorr
DelCn
Sp
DelM

T_Score_XTandem

PK,FK1 Peptide_ID

Hyperscore
Log_EValue
DeltaCn2
Y_Score
Y_Ions
B_Score
B_Ions
DelM
Intensity
Normalized_Score



Assembling an AMT tag DB
Example data

1876.00533VKHPSEIVNVGDEINVK24847
Monoisotopic_MassPeptideMass_Tag_ID

R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V
R.VKHPSEIVNVGDEINVK.V

Peptide

294212063922484776263
291592063912484772556
291182063902484769081
296672063892484765386
2109052063882484761511
399452063872484757461
3111952063862484753428

Charge 
State

Scan 
NumberJobMass Tag 

IDPeptide_ID

-11.2760.376263
-13.777872556
-12.826969081
-12.8077.265386
-12.857461511
-4.9269.257461
-5.8980.253428

Log(E_Value) HyperscorePeptide_ID

2.11E-0370.302124847
StD_GANETCnt_GANETAvg_GANETMass_Tag_ID

T_Mass_Tags_NETT_Mass_Tags

T_Peptides T_Score_XTandem



Assembling an AMT tag DB
Processing steps
Thermo-Finnigan 
LTQ .Raw files

MS/MS spectra files

Convert to .Dta using Extract_MSn.exe.  Concatenate .Dta files 
into _Dta.txt file using Perl script.  Improved application (under 
development): Decon_MSn.exe

X!Tandem Results

Process _Dta.txt files with X!Tandem
(round 1 partially tryptic; round 2 dynamic oxidized methionine)

Tab delimited text 
files

Convert X!Tandem .XML files to tab-delimited files using the 
Peptide Hit Results Processor application

Summarized result 
files

Microsoft Access DB

Align datasets using MTDB Creator application

Load into database using MTDB Creator



Assembling an AMT tag DB
PHRP Relationships

Results_Info

PK Result_ID

FK1 Unique_Seq_ID
Group_ID
Scan
Charge
Peptide_MH
Peptide_Hyperscore
Peptide_Expectation_Value_Log(e)
Multiple_Protein_Count
Peptide_Sequence
DeltaCn2
y_score
y_ions
b_score
b_ions
Delta_Mass
Peptide_Intensity_Log(I)

Result_To_Seq_Map

PK,FK1 Unique_Seq_ID
PK,FK2 Result_ID

Seq_Info

PK Unique_Seq_ID

Mod_Count
Mod_Description
Monoisotopic_Mass

Mod_Details

PK,FK1 Unique_Seq_ID

Mass_Correction_Tag
Position

Seq_to_Protein_Map

PK,FK1 Unique_Seq_ID
PK Protein_Name

Cleavage_State
Terminus_State
Protein_Expectation_Value_Log(e)
Protein_Intensity_Log(I)



Assembling an AMT tag DB
Database histograms – filtered on Log(E_Value) ≤ -2

Peptide Mass Histogram
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AMT Tag DB Growth Trend
Trend for Mini 
AMT Tag DB

25 SCX fractionation 
datasets of a single 
growth condition

Trend for Mature 
AMT Tag DB

521 different samples 
from ~25 different 
conditions
Slope of curve decreases 
as more datasets added 
and fewer new peptides 
are seen

Filtered on Log(E_Value) ≤ -2

Filtered on Peptide 
Prophet Probability ≥ 0.99



Identifying LC-MS Features
VIPER software

Visualize and find features in LC-MS data
Match features to peptides (AMT tags)
Graphical User Interface and automated analysis mode



Peak Matching Steps
Load LC-MS peak lists from Decon2LS
Filter data
Feature definition over elution time
Select AMT tags to match against
Optionally, find paired features (e.g. 16O/18O pairs)
Align LC-MS features to AMT tags using LCMSWarp
Broad AMT tag DB search
Search tolerance refinement
Final AMT tag DB search
Report results

Identifying LC-MS Features



AMT Tag database selection

Identifying LC-MS Features

Connect to mass tag 
system (MTS) if 
inside PNNL or use 
standalone Microsoft 
Access DB



Alignment using LCMSWarp

Calculated 
monoisotopic mass

Average observed NET

AMTs

Deisotoped 
monoisotopic mass

Observed scan number

LC-MS Features

Align scan number (i.e. elution time) of features to NETs 
of peptides in given AMT tag database

Match mass and NET of AMT tags to mass and scan number of 
MS features
Use LCMSWarp algorithm to find optimal alignment to give the 
most matches



Scan number

A
lig

nm
en

t 
S

co
re Best score = 0.00681

Scan = 1113
Shift = 113

Alignment using LCMSWarp

N. Jaitly, M.E. Monroe et. al., 
Analytical Chemistry 2006, 78, 
7397-7409.

LCMSWarp computes a similarity score from conserved 
local mass and retention time patterns



Alignment 
Function

Heatmap of similarity 
score between LC-MS 
features and AMT tags 
(z-score representation)

Alignment using LCMSWarp
Similarity scores between LC-MS features and AMT tags are used 
to generate a score graph of similarity
Best alignment is found using a dynamic programming algorithm 
that determines the transformation function with maximum likelihood

AMT 
tag

NET

MS Scan Number

S. typhimurium on 11T

N. Jaitly, M.E. Monroe et. al., 
Analytical Chemistry 2006, 78, 
7397-7409.



Alignment using LCMSWarp
Transformation function is used to convert from scan 
number to NET

Features centered at same scan number get the same obs. NET value
When matching LC-MS features to AMTs, we will search +/- a NET 
tolerance, which effectively allows for LC-MS features to shift around a 
little in elution time
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Alignment using LCMSWarp
NET Residual Plots 

Difference between NET of LC-MS feature and 
NET of matching AMT tag 

Indicates quality of alignment between features 
and AMT tags

This data shows nearly linear alignment 
between features and AMTs, but the algorithm 
can easily account for non-linear trends

NET Residuals if a linear mapping is used NET Residuals after LCMSWarp

A
M

T 
ta

g 
N

E
T

MS Scan 
Number

S. typhimurium on 11T



Non-linear alignment 
example #1

Identical LC separation system, 
but having column flow 
irregularities

Alignment using LCMSWarp

AMT 
tag

NET

MS Scan Number

S. typhimurium on 9T

NET Residuals after LCMSWarp

NET Residuals if a linear mapping is used



Non-linear alignment 
example #2

AMT Tag DB from C18 LC-MS/MS 
analyses using ISCO-based LC 
(exponential dilution gradient)
LC-MS analysis used C18 LC-MS 
via Agilent linear gradient pump

Alignment using LCMSWarp

NET Residuals after LCMSWarp

NET Residuals if a linear mapping is used

S. oneidensis on 
LTQ-Orbitrap



Non-linear alignment 
example #3

AMT Tag DB from C18 LC-MS/MS 
analyses using ISCO-based LC
LC-MS analysis used C18 LC-MS 
via Agilent linear gradient pump

Alignment using LCMSWarp

NET Residuals after LCMSWarp

NET Residuals if a linear mapping is used

QC Standards (12 
protein digest) on 
LTQ-Orbitrap



Alignment using LCMSWarp
LCMSWarp Features

Fast and robust
Previous method used least-squares regression, iterating through a 
large range of guesses (slow and often gave poor alignment)

Requires that a reasonable number of LC-MS features match the 
AMT Tag DB

S. typhimurium on 11T
match against 18,617 S. typhimurium PMTs

S. typhimurium on 11T
match against 65,193 S. oneidensis PMTs



Alignment using LCMSWarp
In addition to aligning data in time, we can also 
recalibrate the masses of the LC-MS features

Possible because mass and time values are available for both 
LC-MS features and AMT tags

Two options for mass re-calibration
Bulk linear correction
Piece-wise correction via LCMSWarp

Visualize mass differences using mass error histogram 
or mass residual plot



Match Tolerances
Mass: ±25 ppm
NET: ±0.05 NET

Mass Error Histogram
List of binned mass error values

Difference between feature's mass and 
matching AMT tag's mass
Bin values to generate a histogram
Typically observe background false 
positive level

3.60.005691573.8321573.8381
11.80.018481571.8921571.9107
12.20.019121571.8311571.8498
11.30.017701571.7261571.74325
11.10.017451570.8831570.9005

Mass 
Error 
(ppm)

Delta 
Mass 
(Da)

AMT Tag 
Mass 
(Da)

LC-MS 
Feature 

Mass (Da)

100

200

300

400
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Count (LC-MS Features)

Mass Error (ppm)

Likely false 
positive 

identifications

Likely true 
positive 

identifications



Option 1: Bulk linear correction
Use location of peak in mass error histogram to adjust 
masses of all features
Shift by ppm mass; absolute shift amount increases as 
monoisotopic mass increases

Shift all masses -11.6 ppm:

Δmass= -11.6ppm x massold

1x106 ppm/Da

For 1+ feature at 1570.9005 Da,
Δmass = -0.0182 Da

For 3+ feature at 2919.4658 Da,
Δmass = -0.0339 Da

Mass Calibration
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Count (LC-MS Features)

Mass Error (ppm)

Peak Center of mass: 11.6 ppm
Peak Width: 2 ppm at 60% of max
Peak Height: 404 counts/bin
Noise level: 19 counts/bin

Peak Center of mass: 11.6 ppm
Peak Width: 2 ppm at 60% of max
Peak Height: 404 counts/bin
Noise level: 19 counts/bin

11.6 ppm



Mass Calibration

MS Scan Number

Mass 
Residual

Mass Error (ppm) 
vs. Scan Number

Option 2: Piece-wise correction via LCMSWarp
Examine sections of the data to determine a custom mass shift 
for each section
One option is to divide into time sections

Mass Error (ppm) vs. Scan Number 
after correction

MS Scan Number

S. typhimurium on 11T



Mass Calibration

Mass Error (ppm) 
vs. m/z

m/z

Mass 
Residual

Option 2: Piece-wise correction via LCMSWarp
Second option is to divide into m/z sections
LCMSWarp utilizes a hybrid correction based on both mass error 
vs. time and mass error vs. m/z

Mass Error (ppm) vs. m/z
after correction

m/z

S. typhimurium on 11T



Mass Calibration
Comparison of the three methods

Mass error histogram gets taller, narrower, and more symmetric
Linear Mass error vs. m/z Mass error vs. time Hybrid

Not all datasets show the same trends, but Hybrid mass recalibration is 
generally superior
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Peak Matching Steps
Load LC-MS peak lists from Decon2LS
Filter data
Feature definition over elution time
Select AMT tags to match against
Optionally, find paired features (e.g. 16O/18O pairs)
Align LC-MS features to AMT tags using LCMSWarp
Broad AMT tag DB search
Search tolerance refinement
Final AMT tag DB search
Report results

Identifying LC-MS Features



Identifying LC-MS Features
Match Features to LC-MS/MS IDs
S. typhimurium DB, from 25 LC-MS/MS analyses

18,617 AMT tags, all fully or partially tryptic
Look for AMT tags within a broad mass range, 
e.g., ±25 ppm and ±0.05 NET of each feature

Average observed NET

S. typhimurium on 11T FTICRS. typhimurium AMT Tag Database

18,617 AMT tags 5,934 features5,934 features
4,678 features have match,
matching 6,242 AMT tags

Observed NET



Search tolerance refinement
Can use mass error and NET error histograms to 
determine optimal search tolerances

Examine distribution of 
errors to determine optimal 
tolerance using expectation 
maximization algorithm

Examine distribution of 
errors to determine optimal 
tolerance using expectation 
maximization algorithm

±1.76 ppm



Repeat search with final search tolerances
5,934 features

Identifying LC-MS Features

Match Tolerances
Mass: ±25 ppm
NET: ±0.05 NET

Observed NET

Match Tolerances
Mass: ±1.76 ppm
NET: ±0.0203 NET

3,866 features with matches
3,958 out of 18,617 AMT tags matched using ±1.76 ppm



NET

Monoisotopic Mass

1,767.960

1,767.964

1,767.968

1,767.972

1,767.976

1,767.980

1,767.984

0.350 0.358 0.366 0.374 0.382 0.390 0.398 0.407

Given feature can match more than one AMT tag
Need measure of ambiguity

1767.9727 Da
NET: 0.383

1767.9727 Da
NET: 0.383

0.3921767.9664R.SIGIAPDVLICRGDRAI.P36259992

0.3801767.9730K.DLETIVGLQTDAPLKR.A105490

0.3731767.9777T.RALMQLDEALRPSLR.S35896216

NETMass (Da)PeptideAMT Tag IDMatch Tolerances
Mass: ±4 ppm
NET: ±0.02 NET

Δ mass = 2.8 ppm
Δ NET = -0.010

Δ mass = 0.17 ppm
Δ NET = -0.003

Δ mass = -3.5 ppm
Δ NET = 0.009

Identifying LC-MS Features

1.6 ppm



σmj = 4 ppm, σtj = 0.025
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38837.2Sum:
0.145521.4

0.7027042.5

0.166273.3

pijNumerator

3.2670.3921767.966436259992

0.0900.3801767.9730105490

3.0120.3731767.977735896216

dij
2NETMass (Da)AMT Tag ID

K.K. Anderson, M.E. Monroe, and
D.S. Daly. Proteome Science 2006, 
4, 1.

dij

NET

Monoisotopic Mass

1,767.960

1,767.964

1,767.968

1,767.972

1,767.976

1,767.980

1,767.984

0.350 0.358 0.366 0.374 0.382 0.390 0.398 0.407

Match Tolerances
Mass: ±4 ppm
NET: ±0.02 NET

0.70

0.16

0.14

Identifying LC-MS Features



SLiC: Spatially Localized Confidence Score
Measures uniqueness of match

0.062.150.140.3921767.9664R.SIGIAPDVLICRGDRAI.P36259992

0.973.680.700.3801767.9730K.DLETIVGLQTDAPLKR.A105490

0.613.130.160.3731767.9777T.RALMQLDEALRPSLR.S35896216

Avg 
Disc 

Score
Average 

XCorr
SLiC 
ScoreNETMass (Da)PeptideAMT Tag ID

NET

Monoisotopic Mass

1,767.960

1,767.964

1,767.968

1,767.972

1,767.976

1,767.980

1,767.984

0.350 0.358 0.366 0.374 0.382 0.390 0.398 0.407

0.16

0.14

0.70

Identifying LC-MS Features

K.K. Anderson, M.E. Monroe, and
D.S. Daly. Proteome Science 2006, 
4, 1.



Effect of search tolerances on Mass Error histogram
If mass error plot not centered at 0, then narrow mass windows 
exclude valid data
Decreasing mass and/or NET tolerance reduces background 
false positive level

Search tolerance refinement
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Peak Matching Steps
Load LC-MS peak lists from Decon2LS
Filter data
Feature definition over elution time
Optionally, find paired features (e.g. 16O/18O pairs)
Align LC-MS features to AMT tags using LCMSWarp
Broad AMT tag DB search

±25 ppm and ±0.05 NET
Search tolerance refinement
Final AMT tag DB search

e.g. ±1.8 ppm and ±0.02 NET
Report results

Identifying LC-MS Features



Automated processing using VIPER
Processing steps and parameters defined in .Ini file

Separate .Ini file for 14N/15N pairs and 16O/18O pairs

Automated Peak Matching



Browsable result folders for visual QC of each dataset
S. typhimurium on 11T FTICR

Data Searched Data With Matches

Mass Errors Before Refinement Mass Errors After Refinement

2D Plot Metrics
Reasonable number 
of matches
NET range ≈ 0 to 1

2D Plot Metrics
Reasonable number 
of matches
NET range ≈ 0 to 1

Peak Matching Results

Mass Error 
Histogram Metrics

Well defined, 
symmetric mass 
error peak 
centered at 0 ppm

Mass Error 
Histogram Metrics

Well defined, 
symmetric mass 
error peak 
centered at 0 ppm



Browsable result folders for visual QC of each dataset
S. typhimurium on 11T FTICR

Total Ion Chromatogram (TIC)

NET Errors Before Refinement NET Errors After Refinement

Base Peak Intensity (BPI) Chromatogram

Peak Matching Results

NET Error 
Histogram Metrics

Well defined, 
symmetric NET 
error peak 
centered at 0

NET Error 
Histogram Metrics

Well defined, 
symmetric NET 
error peak 
centered at 0

Chromatogram 
Metrics

Narrow peaks 
evenly distributed 
throughout 
separation window

Chromatogram 
Metrics

Narrow peaks 
evenly distributed 
throughout 
separation window



Browsable result folders for visual QC of each dataset
S. typhimurium on 11T FTICR

Peak Matching Results

NET Alignment Surface Metrics
Should show a smooth, bright yellow, 
diagonal line

NET Alignment Surface Metrics
Should show a smooth, bright yellow, 
diagonal line

NET Alignment Residual Metrics
Data after recalibration should be 
narrowly distributed around zero

NET Alignment Residual Metrics
Data after recalibration should be 
narrowly distributed around zero



Peak Matching Results
What about the unmatched LC-MS features?

Could align LC-MS features across datasets 
Find the unmatched ones that show interesting trends

m
/z

scan #

Generate list of the 
mass and elution 
times for the 
interesting features
Re-analyze the 
sample to perform 
targeted LC-MS/MS
Alignment example for 
36 datasets using 
prototype software tool

After alignment



Similar approaches and software tools: High Res LC-MS
SpecArray (Pep3D, mzXML2dat, PepList, PepMatch, PepArray)

X.-J. Li, et. al. Mol Cell Proteomics 2005, 4, 1328-1340.
msInspect

M. Bellew et. al. Bioinformatics 2006, 22, 1902-1909.
PEPPeR

J. Jaffe et.al. Mol. Cell. Proteomics 2006, 5, 1927-1941.
XCMS (for Metabolite profiling)

C.A. Smith et. al. Analytical Chemistry 2006, 78, 779-787.
Surromed label-free quantitation software (MassView)

W. Wang et al. Analytical Chemistry 2003, 75, 4818-4826.

LC-MS Feature Discovery



Similar approaches and software tools: Low Res LC-MS
Signal maps software

A. Prakash et. al. Mol. Cell Proteomics 2006, 5, 423-432.
Informatics platform for global proteomic profiling using LC-MS

D. Radulovic, et al. Mol. Cell. Proteomics 2004, 3, 984-997.
Computational Proteomics Analysis System (CPAS)

A. Rauch et. al. J. Proteome Research 2006, 5, 112-121.

LC-MS Feature Discovery



Outline
Introduction
Feature discovery in LC-MS datasets

Feature discovery in individual spectra
Feature definition over elution time

Identifying LC-MS Features using an AMT tag DB


