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The central dogma of biology
DNA — RNA —> Proteins

Genome — Transcriptome — Proteome
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Measurement technologies

(FAle - \PRIMERZ ALF Clone: 4 PriBmer 2 Afitissnss (Sn) (F) Page 4
26

Run: __AntiSense Strand//1628 bp Asplifie pLUPET-1 2

DR D el T a8 00
EE RS TRY R

i} e F A &

gdem oo
R T

w0 e @
=N -H R-F-E R
sEoBRD B D ]
RN RB-R
L]
L B B B B N

B WO W [ z I N N

Y TR [ X- N SR

0w 1 | 28 &am -]
Lo ] i & . LI - ] [ R -

38 & b 4 d RoassPAE
- 4 ¥ i STy
L K | A 3 LEsh-F ¥ .3

[ ) T F AN

.. | LR N N B NN LB
N ] ' L
&




Proteins are the workhorses of cells
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Proteomics seeks
to gain a
systems-level
understanding of
cellular functions
by measuring the
dynamics of
proteins.



Systems biology

Life’'s complexity
pyramid, Oltval &
Barabasi, Science,
2002

Regulatory motifs

.tion storage — Processing — E-

Question: Will genome inform you everything?



Systems Biology

Many proteins are functionally linked through allosteric or
other mechanisms into biochemical ‘circuits' that perform
a variety of simple computational tasks including
amplification, integration and information storage.

(D Bray, Nature, 1995)

While long-term information is stored in the genome, the
proteome is crucial for short-term information
storage or learned behaviors

The cell’'s large scale functional organization provides a
multi-level network view of motifs, pathways, and
modules, ect.



From systems biology to synthetic biology
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Proteomics
(PROTEOme DynaMICS)

Proteome: the entire complement of proteins
expressed in a cell, tissue or organism.

Proteomics deals with the dynamics of the
proteome. In a simple term, proteomics primarily
focuses on:

m Ildentify
m Quantify

as many proteins as possible in biological samples

Proteomics is a high-throughput technology for the
systems level study of proteins.



Unique Aspects of Proteomics

Not just another version of gene expression

Quantitative proteomics can provide multi-
dimensional dynamics information.

m Protein expression/abundance

m Posttranslational modifications (phosphorylation,
glycosylation, etc.)

m Protein isoforms (splicing variants, protein
fragments)

m Protein-protein interactions
m subcellular localization & translocation
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Protein Post-Translational Modifications (PTMs)
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Impact of proteomics

Human disease
m Improving diagnostics

Novel Biomarkers for diseases
® Drug discovery

m New levels of understanding of biology and disease
mechanisms

Bioenergy.

m Systems level understanding of Biomass
fermentation by microbes

m New engineering targets for enhanced biofuel
production

Indispensable tool in systems biology



How does proteomics work?

Peptide = chain of amino acids

Enzyme
digestion Ry 0
CH N C CH o
% N/ N\
N \c|/ QCH/ NH ‘”3/
SN
N terminus C terminus

polypeptide chain

Protein Peptide

Liquid chromatography-
mass spectrometry
or LC-MS




How does proteomics work?

Cells, tissue, biofluids

l LC-MS and MS/MS
gas flow
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Integrative Functional Proteomics
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Relative Quantification by Spectral Counting
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Plasma protein concentration (ng/mL)

Qian et al., Proteomics, 2005, 5:572.
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Accurate Quantification:
Stable Isotope Dilution Concept

Light (*2C, 160, 1“N) and heavy isotope (13C, 180, 1°N) labeled
peptide pairs have exactly identical chemical properties

L H
gas flow >
Sample A Light Nanoelectrospray
>
— =ﬁ++_ MS inlet =) é
Sample B o 2
g Heavy /» = | 11
m/z
Pass together through LC, ESI, L/H ratio

In all ion transmission spaces

Heavy isotope (13C, 180, *N) labeled peptides serve
as internal standards



Quantitative Proteomics Using °0O/80 Labeling
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Petritis, et al. J. Proteome Res. 2009. T T T i e




From Global Discovery to Targeted
Quantification

Limitations of global discovery:

= Not reproducible in terms of low overlap between
large number of biological replicates or missing data.

10 replicates

D oo
overlap

J0I%0 81 %
overlap overlap

= Limited sensitivity for detecting low-abundance
proteins

21



Targeted quantification and multiplexed assays

MS/MS 544.90
spectrum Y 80152
. y92+
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Selected Reaction Monitoring (SRM) mode.
50-100 proteins can be tested in a single analysis.
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Targeted mass spectrometry for
guantification
" ~100% reproducible detection (Only selected candidates

will be screened)

= Better sensitivity and no missing data (10-50 fold more

sensitive)
= High specificity and absolute quantification

= Multiplexed (>100 proteins per analysis) and affinity-

reagent free

Targeted mass spectrometry can quantify almost

proteins, isoforms...
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PRISM-SRM

PRISM: high-pressure high-resolution separations
with intelligent selection and multiplexing

3 pum, C18 column
(200 pm i.d. > 50 cm) On-line monitoring heavy

internal standard peptides

Capillary LC (high pH)

000000000000

96 well plate 000000000000 000000000000

000000000000
000000000000

0@000@000e00

Intelligent Selection Fraction multiplexing
of targeted peptides (based on partial
orthogonality between low
LC-SRM and high pH RPLC)

Tujin Shi Shi et al., PNAS, 2012, 109, 15395-400. 4
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Post-translational modifications

Many types of important PTMs can be measured by
proteomics:

» Phosphorylation

» Ubiquitination

» Acetylation

» Proteolytic processing (N-terminal and C-terminal)
» Thiol-based redox modifications

26
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, and many other cellular processes

Ciriolo et al. Cell Death and Differentiation 2005.p1555

ISM, gene expression

metabol



OxyR: a molecular code for redox signaling

A HS SH
Redox state of the cell
Effectors:
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B Reduced Modified Modified
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Redox Proteomics Approaches

- SNO . .
SNO  S-nitrosylation
~ St Thiol-affinity
Protein . S-glutathionylation enrichment
‘ \. - S-acylation l
NEMl Blocking free thiols On-resin tryptic
A digestion

> 4

On-resin multiplex
isobaric labeling

Selective reduction

Ascorbate Glutaredoxm ‘l‘DTT lHydroxyIamine

onw

Ay SNO i : :
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\\:\\ multiplexing) ‘
S % LC-MS/MS
Total oxidation S-acylation

Guo, et al., Nature Protocols, 2014
Guo, et al., Mol Cell Proteomics, 2014



Application: Total thiol oxidation
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Jia Guo
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Light/dark redox
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Combine
LC-MS/MS In collaboration with Dr. Himadri

analysis Pakrasi at Washington Uni.
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LC-MS/MS analysis
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Proteome-wide Light/Dark Modulation of
Protein Thiol Oxidation in Cyanobacteria

Redox dynamics on ~2000 Site stoichiometry
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Redox sensitive proteins

PET and phycobilisome
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Redox sensitivity predicts enzyme
functional sites
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Obesity, insulin resistance, and
pancreatic islet hyperplasia

Liver

Insulin
resistance

B_|00d More insulin
circulatory secretion

Control

Liver Insulin Receptor Knockout (LIRKO) Model (mimic a

level of stress)

In collaboration with Rohit Kulkarni at Joslin Diabetes Center



Evidence of Blood Circulatory Factors by
Parabiosis Experiments

A LIRKO mouse and a
LIRKO wild-type mouse were
surgically joined to
Create a common
circulation. The beta cell
replication was
evaluated by BrdU after
14 weeks.

wild-type

- in WT partner - in LIRKO partner
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Enriched canonical pathways
(mouse islets)
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The story of a cell under stress
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Summary

Proteomics has become an indispensable technology
for biological research, especially systems biology

New technologies are continually being developed for
highly sensitive quantification of proteins, isoforms,
and PTMs

It would be interested to see how the technologies are
being applied and integrated with other tools to
achieve predictive biology and more effective
synthetic biology



