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Some	approaches	for	achieving	higher	resolu5on		
ion	mobility	separa5ons;	there’s	typically	a	catch…..	

	
	
•  SeparaJon	at	very	low	temperature;	challenges:	design	complexity,	

maintaining	uniform	temperature	over	useful	volume		

•  Extended	residence	Jme	DifferenJal	Mobility	separaJons	(e.g.	
FAIMS);	challenges:	large	ion	losses,	slow	scan	speed	

•  SeparaJon	in	flowing	(or	expanding)	gas;	challenges:	limited	
separaJon	space,	performance	trade-offs	

•  SeparaJon	in	mulJ-pass	(i.e.	cyclic)	devices;	challenges:	increasingly	
limited	mobility	range	and	compounded	losses	with	each	pass	

	
•  DriA	separa5on	over	extended	path	length;	challenges:	space	and	

cost	of	long	path	designs,	large	voltage	drop	for	long	path	



Ques5ons	to	be	addressed	
	
	

•  Is	very	long	path	length	(L)	IMS	feasible?	

•  Can	efficient	ion	uJlizaJon	be	achieved?	

•  Does	resoluJon	(R)	increase	significantly? 

	
•  If	achieved,	is	increased	IMS	resoluJon	really	useful?	

•  Can	peak	broadening	with	greatly	extended	path	IMS	be	
avoided?			

•  What	are	the	limits	on	IMS	path	length?	



Use of traveling waves (TW) in  
Structures for Lossless Ion Manipulations (SLIM)  

F 

 
•  Initial work with short path TW SLIM IMS showed good 

performance*; theory** indicates R achievable ∝ (L)1/2 

•  TW use reduces SLIM complexity (e.g. no need for ‘on-board’ 
components) 

•  Voltages needed independent of L;	large voltage drops avoided 
 
•  Enables new (and more easily implemented) ion manipulations 

*Hamid	et	al.,	Anal.	Chem.,	87,	11301	(2015)		
	**Shvartsburg	and	Smith,	Anal.	Chem.,	80,	9689	(2008)	

Simion 8.1 representation of field at mid-point of gap (1.5 mm from surface for 3 mm gap between two surfaces) 



Gap	3	mm;	4,3	electrode	arrangement	
TW	amplitude	30	V;	Guard	32	V;	RF	750	kHz,	300	Vp-p	

	

•  Ions confined by pseudopotential to gap between surfaces 
•  Guard bias prevents lateral losses 
•  Simulations and experiment show lossless operation feasible from ~0.01 to ~50 torr 

 

Ion	confinement	in	TW	SLIM	2.0	designs	
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6,5	electrode	arrangement	
	(6	RF	electrodes	separaJng	5	TW	electrode	arrays)	

	

Region	of	ion	confinement	

See	Wednesday	presentaJon	by	Sandilya	Garimella;	WOH	2:30	pm	
		



		

SLIM 2.0 traveling wave IMS (6,5 electrode arrangement) 

Traveling Wave propagation 
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Traveling Wave propagation 

 

~3	mm	gap	between	surfaces	

One	of	two	SLIM	surfaces	with	6	RF	electrodes	separaJng	5	TW	electrode	arrays	

Hamid	et	al.,	Anal.	Chem.,	87,	11301	(2015)		
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Ion	current	transmiLed	through	30-cm	TW	SLIM	module	

Gap	5	mm;	guard	bias	15	V;	TW	amplitude	30	V,	speed	84	m/s;	RF	~800	kHz,	200	VP-P	

Hamid	et	al.,	Anal.	Chem.,	87,	11301	(2015)		



30-cm TW SLIM module vs. 0.9-m conventional drift tube (DTIMS) 

TW SLIM IMS vs. drift tube IMS resolution 
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*	30-cm	mulJ-turn	path	scaled	from	44	cm	path	experimental	measurements	

Straight			Mul5-turn	(16)	

	6,5	arrangement		

The cost of changing direction? 

Hamid	et	al;	submiied	for	publicaJon	

MulJ-turn	(44	cm)	
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No	significant	loss	of	resoluJon	observed	due	to	turns	



Long	path	IMS	module	consists	of	two	14”	x	18”	surfaces	with	mirror	image	electrode	arrays	
TW	electrode	dimensions:	0.43	mm	width	x	0.91	mm	length;	0.13	mm	electrode	gaps	

		

Long	path	(13-m;	6,5)	SLIM	IMS	module		

See	Wednesday	poster	by	Liulin	Deng	et	al;	WP	453	
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Ion	funnel	trap	

TW	SLIM	IMS	module	

Exit	ion	funnel	

Arrangement	for	ini5al	long	path	SLIM	IMS	studies		

•  Ion	funnel	trap	used	for	ion	packet	injecJon	
•  Long	path	SLIM	module	replaces	DTIMS	
•  ExiJng	ions	transmiied	to	TOF-MS		
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Robust	long	path	SLIM	IMS	performance	
	

13-m	path	length,	6,5	electrode	arrangement		

EssenJally	lossless	ion	transmission	 Stable	extended	ion	transmission	

TW	speed	124	m/s,	amplitude	30	V;	guard	bias	5	V	
RF		220	Vp-p	650	kHz;	gap	2.75	mm	;	4.0	Torr	N2	

See	Wednesday	poster	by	Liulin	Deng	et	al;	WP	453	



	ResoluJon	for	m/z	622	and	922	peaks		

TW	speed	=124	m/s;	TW	amplitude	30	V;	guard	5	V	
RF	amplitude	=	220	Vp-p	650	kHz;	2.75	mm	gap		

4	torr	

Robust	long	path	SLIM	IMS	performance	
	

13-m	path	length,	6,5	electrode	arrangement		



EsJmated	separaJon	peak	capacity	~	300	

Mixture	of	pepJdes,	fluorinated	
phosphazines,	and	isomeric	sugars	

	
TW	148	m/s;	amplitude	30	V,	guard	5	V	

RF	amplitude	220	Vp-p,,650	kHz;		
2.75	mm	gap;	3.00	Torr	N2	

FWHM:	1.4	ms	 FWHM:	1.6	ms	 FWHM:	2.8	ms	

Peak	capaciJes	achieved	rival	LC	

Liulin	Deng	

13-m	path	TW	SLIM	separa5on	



Long	path	SLIM	IMS-MS	of	a	pepJde/carbohydrate/lipid	mixture	

1 

1 

13-m	path	length	TW	SLIM	IMS	
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SLIM	IMS-MS	of	a	mixture	containing	Lacto-N-fucopentose	I	and	II	isomers	

Lacto-N-fucopentose	I	and	II	
	separately	analyzed	

	

Lacto-N-fucopentose	I	and	II	mixture	
	

Lacto-N-fucopentaose	I Lacto-N-fucopentaose	II	 
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Comparison	of	IMS	MS	performance	for	3	pentasaccharides	using		
long	path	SLIM,	driA	tube,	short	SLIM	and	Waters	Synapt	G2	IMS-MS	

TW	SLIM		
		(44-cm)	

13-m	path	TW	SLIM			

Synapt	G2*	
(2.6	torr,	25-cm)	

*Li,	H.;	Bendiak,	B.;	Siems,	W.	F.;	Gang,	D.	R.;	Hill	Jr,	H.	H.	Anal.	Chem.,	85,	2760	(2013)	

m/z	851.3	



IMS separations of pentapeptides differing by luecine vs. isoluecine 
90-cm	drin	tube	 44-cm	TW	SLIM	

m/z	556.3	

13-m	path	TW	SLIM	



(PE(18:1(9E)/18:1(9E))	+	H)+	

(PE(18:1(9Z)/18:1(9Z))	+	H)+	

90-cm	DTIMS		
Individual	Standards	

30-cm	TW	SLIM	IMS	
Individual	Standards	

13-m	TW	SLIM	IMS	
Individual	Standards	

13-m	TW	SLIM	IMS	
Mixture	

Dis5nguishing	Cis/Trans	Double	Bonded	Lipids	
	

m/z		744.5	

Liulin	Deng	and	Erin	Baker	



Multiple SLIM paths to yet 
higher resolution ion mobility separations 

•  Optimization of SLIM design and operating conditions 

•  Much longer path SLIM (e.g. multilevel designs) 
  
 



Evalua5on	of	an	ion	escalator	for	moving	ions	between	SLIM	levels	

Escalator	evaluated	using	short	30-cm	TW	SLIM	IMS	module		

See	Wednesday	poster	by	Ahmed	Hamid	et	al;	WP452		
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See	Wednesday	poster	by	Ahmed	Hamid	et	al;	WP452		

Evalua5on	of	an	ion	escalator	for	moving	ions	between	SLIM	levels	
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Escalator	evaluated	using	short	30-cm	TW	SLIM	IMS	module		
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MulJ-level	SLIM	with	ion	escalators	between	levels	

Building	up	in	SLIM	city;	mul5-level	devices	



Multiple SLIM paths to 
higher resolution ion mobility separations 

•  Optimization of SLIM design and operating conditions 

•  Much longer path SLIM (e.g. multilevel designs) 

•  Multi-pass capability in conjunction with long path lengths 
 

  
 



Mul5-pass	long	path	SLIM	IMS	implementa5on	
	

When	one	good	turn	deserves	another	(and	another….)	

See	Thursday	oral	presentaJon	by	Ian	Webb;	ThOH	8:50	AM	

Detail	of	switch		
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TW	206	m/s,	amplitude	30	V;	guard	15	V		
RF	822	kHz,	340	Vp-p;	2.5	torr	N2;	gap	2.75	mm	

Separa5ons	in	a	mul5-pass	long	path	TW	SLIM	IMS	module	
ResoluJon	for	m/z	622	and	922		

(shown	corrected	for	peak	‘lapping’	beyond	pass	#2)	
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Liulin	Deng	



Multiple SLIM paths to 
higher resolution ion mobility separations 

•  Optimization of SLIM design and operating conditions 
 
•  Much longer path SLIM (e.g. multilevel designs) 

•  Multi-pass capability in conjunction with long path lengths 

•  Multi-level SLIM with multi-pass capability 

•  Better use of available path length using peak compression   
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Limita5ons	due	to	increasing	peak	widths	in	long	path	TW	SLIM	IMS	



In	Summary,	some5mes	there	is	not	a	catch….	

•  Very	long	path	lengths	in	SLIM	allow	achieving	significantly	
higher	IMS	resoluJon	with	MS	demonstrated	

	
•  High	resoluJon	IMS	separaJons	achieved	with	efficient	ion	
uJlizaJon	

•  Much	longer	path	IMS	feasible	with	mulJ-level	designs	(>200-m	
in	compact	designs);	km	paths	with	mulJ-pass	separaJons	and	
periodic	peak	compression	

•  Ion	manipulaJons	feasible	with	TW	SLIM	can	be	interfaced	with	
essenJally	any	MS	platorm	type	(e.g.	FTICR	or	orbitraps)	
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