A combined electrodynamic ion funnel and ion trap coupled to orthogonal acceleration (oa-)TOF MS was developed. The performance of the ion trap was characterized in the trapping and continuous modes.

The improvements in sensitivity were accompanied by a significant reduction in the background noise level, leading to an order of magnitude increase in S/N for a peptide mixture.

Results

Current Pulse Measurements with 1 µM Reserpine Solution

- Signal is measured at the collisional quadrupole rods at various accumulation times.
- The number of ions accumulated in the ion funnel trap increases proportionally to the accumulation time.
- The current pulses generated by ions accumulated in the trap are two orders of magnitude higher than the total ion current of the continuous beam.
- The amount of neurotensin consumed was 0.3 attomoles.

Mass Spectrum of 10 nM Peptide Mixture in Trapping and Continuous Modes

- The ion trap is a “stacked-ring” type device.
- The RF frequency of 4 V/µm in the trap is controlled independently of the funnel (20 V/µm).
- 180° phase-shifted RF was applied to adjacent electrodes.
- The trap has a charge capacity of ~3x10⁷.
- The trapping efficiency is the ratio of the number of ions accumulated in the trap (measured at the collisional quadrupole) to that introduced into the trap.
- Sensitivity in trapping mode is an order of magnitude higher than in continuous mode at low concentrations.
- Most of background noise is observed in the low m/z range, so that no chemical noise reduction was observed for fibronectin A 2+ (m/z 768.8).

Improvement of S/N and Limit-of-Detection (LOD)

- In the continuous mode, 0.1 nL neurotensin 3+ signal is hardly distinguished from chemical noise.
- Upon trapping, the chemical noise is significantly reduced and the analyte peak S/N increased to 37.

Conclusions

- The ion trap / oa-TOF MS showed an order of magnitude increase in S/N compared to the continuous beam regime.
- The improvement in S/N was due to an increase in sensitivity and reduction in the level of background noise.
- The background noise reduction is due to more efficient desolvation during trapping.
- Further increase in the trap pressure is feasible, provided adequate ion ejection is implemented.

Acknowledgements

The authors thank Carol Paul for assistance in this project. Portions of this research were supported by the U.S. Department of Energy (DOE), Office of Biological and Environmental Research, and the National Institute of Allergy and Infectious Diseases (NIH/DHHS) through interagency agreement Y1-AI-4894-01.

References

Contact Information

Yehia Ibrahim, Ph.D.
Mass Spectrometry Sciences
Pacific Northwest National Laboratory
P.O. Box 999, Richland, WA 99352
email: yehia.ibrahim@pnnl.gov
Phone: (509) 387-2704

Abstract

Electrodynamic Ion-Funnel as a Trap: Performance and Initial Results

Authors

Yehia Ibrahim, Mikhail Belov, and Richard D. Smith

Affiliation

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352