Microchip Electrospay Emitters for Stable Cone-Jet Mode Operation in the Nano-Flow Regime

Ryan T. Kelly, Keqi Tang1, Daniel Irimia2, Mehmet Toner2 and Richard D. Smith1

1Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
2Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, MA

Overview
- Microfluidics technology enables the processing of trace samples to be integrated with fast, efficient separations on a single device.
- Coupling of microfluidics with electrospray ionization (ESI) promises to provide a powerful platform for proteomics analyses.
- Operation of the ESI source in the cone-jet mode at nL/min flow rates provides uniformly small, highly charged droplets that enable effective ionization for high-sensitivity MS analysis.
- We have developed a simple, robust microchip ESI interface. The cone-jet mode operation, novel auxiliary channel used to supply the electrospray voltage, and the sub-nL post-column dead volume offer promise for coupling with high-resolution microchip separations.

Methods

Device Fabrication
- 8 µm deep features are patterned in PDMS from an SU8-on-polystyrene (PS) microchip interface for ESI using simple and widely applicable microfabrication procedures.
- The interface uses an auxiliary channel to provide electrical contact for the stable cone-jet electrospray without sample loss or dilution.
- ESI enhancement is achieved by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of a small Taylor cone at the channel exit ensures sub-nL post-column dead volumes.

Emitter Characterization
- Cone-jet electrospray was demonstrated for up to 90% aqueous solutions and for extended durations.
- Comparable ESI sensitivities were achieved when using both microchip and conventional fused silica ESI capillary emitters, but stable cone-jet mode electrospray could be established over a far broader range of flow rates (from 50 to 500 nL/min) and applied potentials using the microchip emitters. This stability of the microchip emitters should simplify electrospray optimization and make the stable electrospray more resistant to external perturbations.

Results

Cone-Jet Mode Operation
- The Taylor cone of the microchip emitter decreases in size and the base of the cone decreases at an increasing electric field (Figure 6).
- This flexibility enables the cone angle to be largely preserved.
- With the base diameter of the capillary emitter fixed, the electrospray is destabilized at higher voltages.

Extended Operation
- The cone-jet mode operation is stable over a far broader range of flow rates and voltages than the microchip emitter.
- Microchip cone-jet stability ensures robust operation with minimal fine-tuning.

Simple elastomeric ESI interface for coupling microfluidics with mass spectrometry

Conclusions
- The notable features of the microchip ESI interface presented here include:
 - Straightforward device fabrication, using a single tool and common microfabrication procedures.
 - An electrospray auxiliary channel provides electrical contact for ESI without introducing dead volume or diluting the sample.
 - Decoupling the ESI from the sample channel should enable real-time evaluation with electrical performance and stability.
 - Robust performance at flow rates as low as 50 nL/min.
 - Similar sensitivity and signal stability compared with conventional fused silica capillary emitters.
 - Stable operation in the one-bottle, stable, broad range of flow rates and applied potentials.

- Future work will focus on coupling the interface with integrated microdevices for proteomics analyses, combining sample preparation and separation with ESI-MS.

Contact Information
- Ryan T. Kelly, PhD
- Biological Sciences Division, K8-98
- Pacific Northwest National Laboratory
- P.O. Box 999, Richland, WA 99352
- email: ryan.kelly@pnnl.gov

References