
Wei-Jun Qian1, David T. Kaleta1, Brianna Q. Petritis1, Hongliang Jiang2, Tao Liu1, Xu Zhang1, Heather M. Mottaz-Breuer1, Susan M. Varum1, David G. Camp III1, Lei Huang3, Xiangming Fang1, Wei-Wei Zhang3, and Richard D. Smith1

1Biological Sciences Division, Pacific Northwest National Laboratory, 2Covance Laboratories, Inc., 3GenWay Biotech, Inc.

Overview
- Sample: Human plasma
- Objectives
 - To provide a reproducible method to deplete human plasma of highly- and moderately-abundant proteins
 - To improve detection of low-abundant proteins in human plasma through one-dimensional (1D) and two-dimensional (2D) LC-MS/MS

Methods
- Depletion of the top ~60 proteins from human plasma with a ProteomeLab™ IgY-12 LC10 and SepRafil- SuperMix LC2 immunoaffinity columns
- Validation of protein concentrations by ELISA
- Denaturation, reduction, alkylation, and digestion with urea, DTT, iodoacetamide, and trypsin, respectively
- SCX fractionation with a PolysulfoethylA™ column (2.1X200 mm, 5 µm, 300 Å)

Results
- Similar Reproducibility Between Single and Tandem Depletions
- Increased dynamic range of LC-MS analyses

Enhanced Detection of Low-Abundant Proteins Utilizing Tandem Depletions

Conclusions
- Single and tandem depletions have similar reproducibility
- Tandem depletions:
 - Increase the proteome coverage by ~44–53% with LC-MS/MS analyses
 - Improve the dynamic range of LC-MS/MS analyses such that proteins in the pg/mL to ng/mL concentration range are revealed

Efficient Binding in SuperMix Column for 45 Moderately-Abundant Proteins

Table 1. Peptide identification information for two selected low abundant proteins reported to be at sub-ng/mL levels.a

<table>
<thead>
<tr>
<th>Protein</th>
<th>Identified Peptide</th>
<th>Charge State</th>
<th>Score</th>
<th>i.e.m</th>
<th>Spectral Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.SEREOSSEIT</td>
<td>M-C5SFYR</td>
<td>6</td>
<td>4609.52</td>
<td>2.04</td>
<td>10803</td>
</tr>
<tr>
<td>K.S.FYR</td>
<td>M-CF5SFYR</td>
<td>6</td>
<td>4097.02</td>
<td>1.07</td>
<td>10648</td>
</tr>
<tr>
<td>K.LKAPFQ6</td>
<td>M-C5KAPFQ6</td>
<td>6</td>
<td>3657.03</td>
<td>1.02</td>
<td>10757</td>
</tr>
<tr>
<td>M.CSCF</td>
<td>M-C5CSF</td>
<td>6</td>
<td>3587.02</td>
<td>1.00</td>
<td>10539</td>
</tr>
</tbody>
</table>

References

Acknowledgments
Portions of this research were supported by the NCI-National Cancer Institute (award number CA160409), the National Center for Research Resources (RR018522), the Entertainment Industry Foundation (EIF) and the EIF Women’s Cancer Research Fund, and the NIGMS Large Scale Collaborative Research Grant (U54 GM-62119-02). Experimental work was performed in the Environmental Molecular Sciences Laboratory, a national user facility supported by the U.S. Department of Energy (DOE) under the auspices of the Office of Science, DOE, Office of Biological and Environmental Research (OBER). Email: brianna.petritis@pnl.gov

Contact Information
Brianna Q. Petritis
Biological Sciences Division, 98-98 Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352
e-mail: brianna.petritis@pnl.gov