Comparison of CID, ETD, and HCD for Top-down Characterization of Histones

Zhixin(Michael) Tian
Nikola Tolić, Rui Zhao, Shawna, Hengel, Si Wu, Ronald J. Moore, Errol W. Robinson, Richard D. Smith, Ljiljana Paša-Tolić

Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory
Histones and post-translational modifications (PTMs)

Core histones: H4, H2B, H2A, H3

Histones are heavily modified and very complex

Human H3.1 (UniProt)

A=Acetylation, M=Methylation, M2=asymmetrical dimethylation
MM=symmetrical dimethylation, M3=trimethylation, P=Phosphorylation

RPLC-MS/MS of HeLa core histones
Online RPLC/WCX-MS/MS
HeLa core histones

RPLC separation of histones

WCX-MS/MS of H4

Methods	IDs
RPLC-MS/MS | 127
WCX-MS/MS | 135
RPLC-WCX-MS/MS | 708
Unambiguous localization of K12ac in histone H4

CID

ETD

Ambiguous identifications:
H4_S1acK{5, 8, 12}acK16acK20me2

Unique identification:
H4_S1acK12acK16acK20me2
Optimizing fragmentation for histone characterization

HeLa core histones (3.75 µg)

<table>
<thead>
<tr>
<th></th>
<th>NCE (%)</th>
<th>AT (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCD_45_30</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>HCD_45_60</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>HCD_60_60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>CID_35_30</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>CID_45_60</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>CID_60_60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>ETD_10</td>
<td>/</td>
<td>10</td>
</tr>
<tr>
<td>ETD_15</td>
<td>/</td>
<td>15</td>
</tr>
<tr>
<td>ETD_20</td>
<td>/</td>
<td>20</td>
</tr>
</tbody>
</table>
Different fragmentation conditions

<table>
<thead>
<tr>
<th></th>
<th>NCE (%)</th>
<th>RT (ms)</th>
<th>IDs</th>
<th>Avg [−log(P_Score)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCD_45_30</td>
<td>45</td>
<td>30</td>
<td>123</td>
<td>16.9</td>
</tr>
<tr>
<td>HCD_45_60</td>
<td>45</td>
<td>60</td>
<td>136</td>
<td>15.3</td>
</tr>
<tr>
<td>HCD_60_60</td>
<td>60</td>
<td>60</td>
<td>144 ±8</td>
<td>20.4 ±0.3</td>
</tr>
<tr>
<td>CID_35_30</td>
<td>35</td>
<td>30</td>
<td>62</td>
<td>10.3</td>
</tr>
<tr>
<td>CID_45_60</td>
<td>45</td>
<td>60</td>
<td>56</td>
<td>16.5</td>
</tr>
<tr>
<td>CID_60_60</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>21.2</td>
</tr>
<tr>
<td>ETD_10</td>
<td>/</td>
<td>10</td>
<td>83</td>
<td>23.3</td>
</tr>
<tr>
<td>ETD_15</td>
<td>/</td>
<td>15</td>
<td>160</td>
<td>34.5</td>
</tr>
<tr>
<td>ETD_20</td>
<td>/</td>
<td>20</td>
<td>138</td>
<td>28.9</td>
</tr>
</tbody>
</table>
HCD conditions identification of H4_S1acK16ack20me2

HCD_45_30: Matching fragments=27, P_Score=6.5E-31

HCD_45_60: Matching fragments=38, P_Score=5.9E-39

HCD_60_60: Matching fragments=42, P_Score=1.3E-50
Optimal CID, ETD, and HCD

<table>
<thead>
<tr>
<th></th>
<th>NCE (%)</th>
<th>RT (ms)</th>
<th>IDs</th>
<th>Avg [–log(P_Score)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCD_60_60</td>
<td>60</td>
<td>60</td>
<td>144</td>
<td>20.4</td>
</tr>
<tr>
<td>CID_60_60</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>21.2</td>
</tr>
<tr>
<td>ETD_15</td>
<td>/</td>
<td>15</td>
<td>160</td>
<td>34.5</td>
</tr>
</tbody>
</table>

The Venn diagram illustrates the overlap and unique components of CID, ETD, and HCD at different conditions. Each circle represents a method, and the numbers within the circles indicate the unique and overlapping features of each method.
ETD, HCD, and CID: H4_S1acK16ack20me2

ETD: Matching fragments=56, P_Score=1.1E-76

HCD: Matching fragments=46, P_Score=3.3E-56

CID: Matching fragments=31, P_Score=1.1E-40
H2AX_S1acS139p uniquely identified only by ETD

Top-down only! Not with bottom-up or middle-down!
Advantage of top-down fragmentation

HCD_60_60: H31_K9me2K27me2K36meK79me

y106
y76
y46
y16
- b121: P-K-D-I-Q-L-A-R-R-I-R-G-R-E-R-
y1

CID_60_60: H2B1O_K46meK57me2

y96
y66
y36
y6
- b121: Y-T-S-S-K-
y1
Fragmentation efficiency of CID, ETD, HCD

\[
\% \text{ of unique IDs} = \frac{\text{unique IDs}}{\text{unique IDs} + \text{ambiguous IDs}} \times 100
\]
Conclusions

• An online 2D LC-FTMS platform dramatically improved throughput and sensitivity compared to more traditional platforms, and resulted in identification of hundreds of histone isoforms from microgram levels of protein, including phosphorylation.

• For a single fragmentation method, ETD provides the most confident identifications on average.

• Total number of identifications more than doubled when CID was switched to ETD or HCD.

• Combinatorial modifications across the entire protein sequence could only be identified using top-down proteomics.
Acknowledgements

Ljiljana Paša-Tolić
Joshua Aldrich
Robby Robinson
Shawna Hengel
Si Wu

Bioinformatics
Gordon A. Anderson
Matthew E. Monroe
Nikola Tolić
Samuel O. Purvine

Instrumentation
Ronald J. Moore
Anil K. Shukla
Boyd Champion
Carrie D. Nicora
Daniel J. Orton
Heather M. Mottaz-Brewer
Karl Weitz
Robbie Heegel
Rui Zhao
Ryan T. Kelly
Therese R. W. Clauss
Thomas Fillmore
Michael Russcher
Randy Norheim

Support and Funding: EMSL at PNNL, DOE, NIH NCRR (RR018522)