High Sensitivity Targeted Quantification of ERK Phosphorylation Dynamics and Stoichiometry without Affinity Enrichment

Tujin Shi, Tao Liu, Matthew Gaffrey, Yuqian Gao, William Chrisler, Thomas Fillmore, Carrie Nicora, Marina Gritsenko, Chaochao Wu, Jintang He, Jia Guo, Rui Zhao, Ronald Moore, Richard D. Smith, David Camp, Karin Rodland, Steven Wiley, Wei-Jun Qian

Biological Sciences Division, Pacific Northwest National Laboratory

62nd ASMS Conference, Maryland, June 18, 2014
Outline

I. Background
II. Proof-of-concept study
 (direct quantification of individual site-specific ERK phosphorylation by PRISM-SRM)
III. Comparison of PRISM-SRM with IMAC-SRM
IV. Quantification of ERK phosphorylation dynamics
V. Conclusions
PRISM for much improved SRM sensitivity

(A) PRISM (high Pressure high Resolution Separation with Intelligent Selection and Multiplexing)

(B) LC-SRM

Shi et al., *Proc Natl Acad Sci USA* 2012, 109, 15395-15400.
Significantly improved LOQs with PRISM

<table>
<thead>
<tr>
<th>Targeted MS platform</th>
<th>LOQs (starting material)</th>
<th>Human plasma/serum</th>
<th>Mammalian cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional LC-SRM</td>
<td>~1 µg/mL (1 µL)</td>
<td>~5,000 copies/cell (?)*</td>
<td></td>
</tr>
<tr>
<td>PRISM-SRM</td>
<td>~1 ng/mL (2 µL)</td>
<td>~100 copies/cell (~25 µg)</td>
<td></td>
</tr>
<tr>
<td>IgY14-PRISM-SRM</td>
<td>~50 pg/mL (10 µL)</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

PRISM publications:
- PRISM-SRM without immunoaffinity depletion: Shi et al., *J Proteome Res*, 2013, 12, 3353-3361.
PRISM-SRM is more sensitive than ELISA for EGFR measurement in MCF7 cells

ELISA

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>EGFR (pg/µg total protein)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF7 (breast)</td>
<td>0 (ND)</td>
<td>---</td>
</tr>
<tr>
<td>HT29 (colon)</td>
<td>17</td>
<td>14.2</td>
</tr>
<tr>
<td>MDA-MB-231 (breast)</td>
<td>75</td>
<td>12.7</td>
</tr>
<tr>
<td>A431 (skin)</td>
<td>407</td>
<td>15.1</td>
</tr>
</tbody>
</table>

Conventional LC-SRM

- MDA-MB-231
 - Copies/cell: ~172,000
 - amol/µg: 1696
- MCF7
 - Copies/cell: ~2,500*
 - amol/µg: 21

ERK phosphorylation is ideal for evaluation of analytical platform performance

- Moderate complexity:
 (two isoforms, ERK1 and ERK2; separate or concurrent phosphorylation on proximate T and Y residues in a TEY motif)

- Well-studied both experimentally and theoretically

- Challenging for measuring individual ERK phosphorylation isoforms with antibody-based assays

- Targeted proteomics allows site-specific quantification of PTMs

- However relatively large starting materials required for conventional SRM analysis (~1 mg cell lysate: Tong et al., *Mol Cell Proteomics* 2009, 8, 2131-2144)
Proof-of-concept study

Surrogate peptides for ERK1/2 phosphorylation analysis

<table>
<thead>
<tr>
<th>Isoform</th>
<th>Standard sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERK1</td>
<td>LADPEHDHTGFLTEYVATR (TY-ERK1)</td>
</tr>
<tr>
<td></td>
<td>LADPEHDHTGFLpTTEYVATR (pT-ERK1)</td>
</tr>
<tr>
<td></td>
<td>LADPEHDHTGFLpYTEYVATR (pY-ERK1)</td>
</tr>
<tr>
<td></td>
<td>LADPEHDHTGFL$^{pT}p^{Y}$TEYVATR (pTpY-ERK1)</td>
</tr>
<tr>
<td>ERK2</td>
<td>VADPDHDHTGFLTEYVATR (TY-ERK2)</td>
</tr>
<tr>
<td></td>
<td>VADPDHDHTGFLpTTEYVATR (pT-ERK2)</td>
</tr>
<tr>
<td></td>
<td>VADPDHDHTGFLpYTEYVATR (pY-ERK2)</td>
</tr>
<tr>
<td></td>
<td>VADPDHDHTGFL$^{pT}p^{Y}$TEYVATR (pTpY-ERK2)</td>
</tr>
</tbody>
</table>
Proof-of-concept study

<table>
<thead>
<tr>
<th></th>
<th>SRM Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
</tr>
<tr>
<td>TY-ERK1</td>
<td>724.7 839.4 (y7⁺), 738.4 (y6⁺), 609.3 (y5⁺)</td>
</tr>
<tr>
<td>pT-ERK1</td>
<td>751.3 718.7 ([precursor – 98]³⁺), 821.4 ([y7 – 98]⁺), 927.9 ([y16 – 98]²⁺)</td>
</tr>
<tr>
<td>pY-ERK1</td>
<td>751.3 919.4 (y7⁺), 689.3 (y5⁺), 976.9 (y16²⁺)</td>
</tr>
<tr>
<td>pTpY-ERK1</td>
<td>778.0 745.3 ([precursor – 98]³⁺), 901.4 ([y7 – 98]⁺), 967.9 ([y16 – 98]²⁺)</td>
</tr>
<tr>
<td></td>
<td>Q3</td>
</tr>
<tr>
<td>TY-ERK2</td>
<td>715.3 952.5 (y8⁺), 839.4 (y7⁺), 738.4 (y6⁺)</td>
</tr>
<tr>
<td>pT-ERK2</td>
<td>742.0 709.3 ([precursor – 98]³⁺), 934.5 ([y8 – 98]⁺), 738.4 (y6⁺)</td>
</tr>
<tr>
<td>pY-ERK2</td>
<td>742.0 919.4 (y7⁺), 818.3 (y6⁺), 689.3 (y5⁺)</td>
</tr>
<tr>
<td>pTpY-ERK2</td>
<td>768.7 736.0 ([precursor – 98]³⁺), 901.4 ([y7 – 98]⁺), 446.3 (y4⁺)</td>
</tr>
</tbody>
</table>

- Sensitivity evaluation: the basal level and the stimulated level treated with **10 ng/mL** EGF for **10 min**
- Dose-response experiments: different EGF doses (**0, 0.1, 0.3, 1.0, 3.0, 10 ng/mL**) for either **10 min** or **2 h** stimulations
PRISM-SRM enables direct quantification of site-specific ERK phosphorylation in HMEC cells

10 ng/mL EGF stimulation (10 min)

Light

pTpY-ERK2 pY-ERK2 pT-ERK2

Heavy

pTpY-ERK2 pY-ERK2 pT-ERK2

Basal (no stimulation)

Molar abundance of individual ERK2 isoforms with standard derivation (n = 3)

Estimated LOQ for pT-ERK2: ~1000 copies per cell
PRISM-SRM vs. IMAC-SRM

~50 µg EGF-treated HMEC cell lysate digest

Addition of internal standard (heavy-isotope labeled peptides)

PRISM (~25 µg)

LC-SRM

IMAC (~25 µg)

LC-SRM
PRISM-SRM provides ≥10-fold higher sensitivity than IMAC-SRM

PRISM-SRM

- **pTpY-ERK2**
- **pT-ERK2**

IMAC-SRM

- **pTpY-ERK2**
- **pT-ERK2**

Recovery of IMAC (relative to PRISM):

- **pTpY (10.6%)**
- **pY (7.9%)**
- **pT (4.0%)**

![Graph showing peak intensity comparison between PRISM and IMAC for pTpY-ERK2, pT-ERK2, and pY-ERK2](chart)
Distributive vs. processive phosphorylation model for ERK

Distributive model

Processive model
ERK phosphorylation dynamics as a result of EGF-induced dose response

Maximal ERK activation: **0.3-1 ng/mL** EGF at peak activation (10-min); **3 ng/mL** EGF at steady state (2-h)

EGF dose at the peak activation close to physiological levels in humans (~0.5 ng/mL)

Increase of pY-ERK2 mirrors that of pTpY-ERK2, but pT-ERK2 does not increase significantly
ERK phosphorylation dynamics as a result of EGF-induced dose response

Relative abundance changes
(10-min vs. 2-h)

Time-dependent ERK2 phosphorylation
(1 ng/mL EGF stimulation)

- Similar stoichiometry changes for pTpY-ERK2 and pY-ERK2 from peak activation to steady state; however pTpY-ERK2 changes more.
- Time-course analysis: the activation pattern of pY-ERK2 is similar to that of pTpY-ERK2, but often with lower stoichiometry.
ERK is phosphorylated in a processive, rather than distributive manner in mammalian cells.

Conclusions

- PRISM-SRM enables sensitive, site-specific quantification of low level protein phosphorylation without affinity enrichment.
- Compared to IMAC, PRISM provides at least 10-fold improvement in SRM sensitivity.
- Phosphorylation dynamics data (dose responses and timecourse) confirms that ERK is phosphorylated in a processive manner in mammalian cells.
- PRISM-SRM has great potential for simultaneous quantification of multiple PTMs in a single analysis (i.e., without serial or parallel enrichment).
Acknowledgments

Contact information: tao.liu@pnnl.gov