A multi-omic investigation of the role of APOE genotype in Alzheimer’s disease

Xueyun Zheng¹, Kristin E. Burnum-Johnson¹, Carrie D Nicora², Kelly G. Stratton³, Kent Bloodsworth¹, Catriona A. Mclean²,³, Jennifer E. Kyle¹, Richard D. Smith¹, Blaine Roberts³, and Erin S. Baker¹,*

¹Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; ²Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3181, Australia; ³Florey Institute of Neuroscience and Mental Health, U. of Melbourne, Parkville, VIC 3010

Overview

• Alzheimer’s disease (AD) is the most common neurodegenerative disease.
• The genotypes of apolipoprotein E (APOE) were shown to be different risk factors for AD.
• Here a multi-omic approach was performed to investigate the molecular profiling and the role of APOE genotype in AD.

Introduction

Alzheimer’s Disease and APOE Genotype

Alzheimer’s disease (AD) is the most common neurodegenerative disease affecting 47 million people worldwide. There is no cure as far as its cause remains unclear. However, the strongest risk factor for developing AD after age is the apolipoprotein E (APOE) gene ¹. Previous studies showed that among the APOE genes (ε2, ε3 and ε4), the ε4 carriers have a greater chance of developing AD, while the ε2 carriers are protected. It is unclear how the ε4 allele increases the risk of developing AD. Thus, the study of multi-omic molecular changes that occur due to the different APOE genotypes can provide important insights into the mechanisms that can protect (ε2 carriers) or enhance (ε4 carriers) the risk of developing AD.

Methods

Here we used multi-omic (proteomic, metabolomic and lipidomic) measurements to investigate molecular changes between AD and control patients with different APOE genotypes.

CoHort Study disease and genotype

• Sampling:
 Brain tissue samples from the frontal cortex and cerebellum were obtained from 62 postmortem patients, including four different APOE genotypes (ε2/ε3, ε3/ε3, ε3/ε4 and ε4/ε4).

• Sample extraction:
 NPLEx: Single-Sample Extraction for Integrative Proteomic, Metabolomic, and Lipidomic Analyses

• Multi-Omic Analyses:
 Integrative Proteomic, Metabolomic, and Lipidomic Analyses were performed and the data processing are ongoing.

Results

Lipidomic profiling for AD and APOE genotype

<table>
<thead>
<tr>
<th>Control</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε2/ε3</td>
<td></td>
</tr>
<tr>
<td>n = 12</td>
<td></td>
</tr>
<tr>
<td>ε3/ε3</td>
<td></td>
</tr>
<tr>
<td>n = 12</td>
<td></td>
</tr>
<tr>
<td>ε3/ε4</td>
<td></td>
</tr>
<tr>
<td>n = 12</td>
<td></td>
</tr>
<tr>
<td>ε4/ε4</td>
<td></td>
</tr>
<tr>
<td>n = 12</td>
<td></td>
</tr>
</tbody>
</table>

Control AD

Increase PS in ε3/ε4

Different LPC metabolism in CBM and FCX

Different lipidomic profiles were observed in AD and APOE genotype.

Conclusions

• Multi-omic approaches were applied to understand the role of APOE genotype on AD.
• Different lipidomic profiles were observed in Alzheimer’s disease patients and healthy control.
• Different lipidomic profiles were observed in the cerebellum and frontal cortex of the brain.
• Proteomic and metabolomic profiling are still ongoing.

References

Acknowledgements

This research was supported by grants from the National Institute of Environmental Health Sciences of the NIH (RO1ES022195), National Institute of General Medical Sciences (P41 GM104400), and the Laboratory Directed Research and Development Program at PNNL. The work was performed in the W. W. Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE national laboratory managed by PNNL, operated by Battelle under contract DE-AC05-76RL0183.

Contact: Xueyun Zheng, Ph.D.
Present Address: Department of Chemistry, Texas A&M University
E-mail: xueyunzheng100@gmail.com

Career Opportunities: For potential openings in Integrative Omics Group at PNNL, please visit http://omics.pnl.gov/careers

www.omics.pnl.gov